更改

跳到导航 跳到搜索
添加268字节 、 2024年9月8日 (星期日)
第141行: 第141行:     
===因果态的主要性质===
 
===因果态的主要性质===
 +
因果态是一种特殊的划分方法,它的划分函数记作<math>\epsilon</math>,公式为<math> \epsilon{:}\overleftarrow{S}\mapsto2^{\overset{\leftarrow}{S}}</math>,因果态的集合记作<math>\mathcal{S} </math>,
   −
因果态是有效态的一个特殊形式,因果态的集合记作<math>\mathcal{S} </math>,<math>\mathcal{S} </math>是<math>\mathcal{R} </math>的一种最优形式,因为<math>\mathcal{S} </math>的如下性质。
+
因果态的集合记作<math>\mathcal{S} </math>,<math>\mathcal{S} </math>是<math>\mathcal{R} </math>的一种最优形式,因为<math>\mathcal{S} </math>的如下性质。
   −
(1)因果态集合<math>\mathcal{S} </math>在有效态集合<math>\mathcal{R} </math>的所有类型中,它的预测能力最强,用公式表示为<math>H[\stackrel{\rightarrow}{S}^L|\mathcal{R}]\geq H[\stackrel{\rightarrow}{S}^L|\mathcal{S}] </math>,<math>\stackrel{\rightarrow}{S}^L </math>为<math>L </math>个长度的未来序列集合,<math>H[\stackrel{\rightarrow}{S}^L|\mathcal{R}] </math>和<math>H[\stackrel{\rightarrow}{S}^L|\mathcal{S}] </math>是<math>\stackrel{\rightarrow}{S}^L </math>的条件熵。
+
(1)最大预测性:因果态集合<math>\mathcal{S} </math>在有效态集合<math>\mathcal{R} </math>的所有类型中,它的预测能力最强,用公式表示为<math>H[\stackrel{\rightarrow}{S}^L|\mathcal{R}]\geq H[\stackrel{\rightarrow}{S}^L|\mathcal{S}] </math>,<math>\stackrel{\rightarrow}{S}^L </math>为<math>L </math>个长度的未来序列集合,<math>H[\stackrel{\rightarrow}{S}^L|\mathcal{R}] </math>和<math>H[\stackrel{\rightarrow}{S}^L|\mathcal{S}] </math>是<math>\stackrel{\rightarrow}{S}^L </math>的条件熵。它的证明过程如下:
   −
(2)在相同预测能力的前提下,因果态集合<math>\mathcal{S} </math>在有效态集合<math>\mathcal{R} </math>的所有类型中,它的统计复杂度最小,用公式表示为<math>C_\mu(\hat{\mathcal{R}})\geq C_\mu(\mathcal{S}) </math>,<math>\hat{\mathcal{R}} </math>与<math>\mathcal{S} </math>有同等的预测能力,满足<math>H[\stackrel{\rightarrow}{S}^{L}|\hat{\mathcal{R}}]=H[\stackrel{\rightarrow}{S}^{L}|\mathcal{S}] </math>。
+
 
 +
(2)最小复杂度:在相同预测能力的前提下,因果态集合<math>\mathcal{S} </math>在有效态集合<math>\mathcal{R} </math>的所有类型中,它的统计复杂度最小,用公式表示为<math>C_\mu(\hat{\mathcal{R}})\geq C_\mu(\mathcal{S}) </math>,<math>\hat{\mathcal{R}} </math>与<math>\mathcal{S} </math>有同等的预测能力,满足<math>H[\stackrel{\rightarrow}{S}^{L}|\hat{\mathcal{R}}]=H[\stackrel{\rightarrow}{S}^{L}|\mathcal{S}] </math>。
    
上文中已经介绍了柯式复杂度和统计复杂度的基本概念,如果<math>s^L </math>表示对过程的测量结果的前<math>L </math>个序列,那么它们之间的关系可以近似的表示为:
 
上文中已经介绍了柯式复杂度和统计复杂度的基本概念,如果<math>s^L </math>表示对过程的测量结果的前<math>L </math>个序列,那么它们之间的关系可以近似的表示为:
第162行: 第164行:  
那么公式可以解释为:序列<math>s^L </math>的总信息量≈被归纳的因果态信息量+放弃归纳的随机信息量
 
那么公式可以解释为:序列<math>s^L </math>的总信息量≈被归纳的因果态信息量+放弃归纳的随机信息量
   −
(3)在相同预测能力的前提下,因果态集合[math]\displaystyle{ \mathcal{S} }[/math]在有效态集合[math]\displaystyle{ \mathcal{R} }[/math]的所有类型中,它的随机性最小,用公式表示为<math>H[\hat{\mathcal{R}}^{\prime}|\hat{\mathcal{R}}]\geq H[\mathcal{S}^{\prime}|\mathcal{S}] </math>,<math>\hat{\mathcal{R}} </math>满足<math>H[\stackrel{\rightarrow}{S}^{L}|\hat{\mathcal{R}}]=H[\stackrel{\rightarrow}{S}^{L}|\mathcal{S}] </math>,其中<math>\hat{\mathcal{R}}^{\prime} </math>和<math>\mathcal{S}^{\prime} </math>分别是该过程的下一时刻有效态和下一时刻因果态。
+
(3)最小随机性:在相同预测能力的前提下,因果态集合[math]\displaystyle{ \mathcal{S} }[/math]在有效态集合[math]\displaystyle{ \mathcal{R} }[/math]的所有类型中,它的随机性最小,用公式表示为<math>H[\hat{\mathcal{R}}^{\prime}|\hat{\mathcal{R}}]\geq H[\mathcal{S}^{\prime}|\mathcal{S}] </math>,<math>\hat{\mathcal{R}} </math>满足<math>H[\stackrel{\rightarrow}{S}^{L}|\hat{\mathcal{R}}]=H[\stackrel{\rightarrow}{S}^{L}|\mathcal{S}] </math>,其中<math>\hat{\mathcal{R}}^{\prime} </math>和<math>\mathcal{S}^{\prime} </math>分别是该过程的下一时刻有效态和下一时刻因果态。
    
用互信息的角度去理解的话,上式等价于<math>I(S^{\prime};S)\geq I(\widehat{R}^{\prime};\widehat{R}) </math>,可以理解为任意有效态对它自己下一时刻的互信息中,其中因果态的互信息最大,若不考虑Do干预,因果态和因果涌现理论中最大化有效信息所得到的宏观态意义相同。
 
用互信息的角度去理解的话,上式等价于<math>I(S^{\prime};S)\geq I(\widehat{R}^{\prime};\widehat{R}) </math>,可以理解为任意有效态对它自己下一时刻的互信息中,其中因果态的互信息最大,若不考虑Do干预,因果态和因果涌现理论中最大化有效信息所得到的宏观态意义相同。
115

个编辑

导航菜单