更改

跳到导航 跳到搜索
添加26字节 、 2024年9月11日 (星期三)
第181行: 第181行:  
(3)最小随机性————在相同预测能力的前提下,因果态集合[math]\displaystyle{ \mathcal{S} }[/math]在有效态集合[math]\displaystyle{ \mathcal{R} }[/math]的所有类型中,它的随机性最小:设<math>\hat{\mathcal{R}} </math>和<math>\hat{\mathcal{R}}^{\prime} </math>为满足性质(1)中不等式等号成立的有效态,则对于所有的<math>\hat{\mathcal{R}} </math>和<math>\hat{\mathcal{R}}^{\prime} </math>,都有<math>H[\hat{\mathcal{R}}^{\prime}|\hat{\mathcal{R}}]\geq H[\mathcal{S}^{\prime}|\mathcal{S}] </math>,其中<math>\hat{\mathcal{R}}^{\prime} </math>和<math>\mathcal{S}^{\prime} </math>分别是该过程的下一时刻有效态和下一时刻因果态。
 
(3)最小随机性————在相同预测能力的前提下,因果态集合[math]\displaystyle{ \mathcal{S} }[/math]在有效态集合[math]\displaystyle{ \mathcal{R} }[/math]的所有类型中,它的随机性最小:设<math>\hat{\mathcal{R}} </math>和<math>\hat{\mathcal{R}}^{\prime} </math>为满足性质(1)中不等式等号成立的有效态,则对于所有的<math>\hat{\mathcal{R}} </math>和<math>\hat{\mathcal{R}}^{\prime} </math>,都有<math>H[\hat{\mathcal{R}}^{\prime}|\hat{\mathcal{R}}]\geq H[\mathcal{S}^{\prime}|\mathcal{S}] </math>,其中<math>\hat{\mathcal{R}}^{\prime} </math>和<math>\mathcal{S}^{\prime} </math>分别是该过程的下一时刻有效态和下一时刻因果态。
   −
用互信息的角度去理解的话,上式等价于<math>I(S^{\prime};S)\geq I(\widehat{R}^{\prime};\widehat{R}) </math>,可以理解为任意有效态对它自己下一时刻的互信息中,其中因果态的互信息最大,若不考虑Do干预,因果态和因果涌现理论中最大化有效信息所得到的宏观态意义相同。
+
用互信息的角度去理解的话,上式等价于<math>I(\mathcal{S}^{\prime};\mathcal{S})\geq I(\hat{\mathcal{R}}^{\prime};\mathcal{R}) </math>,可以理解为任意有效态对它自己下一时刻的互信息中,其中因果态的互信息最大,若不考虑Do干预,因果态和因果涌现理论中最大化有效信息所得到的宏观态意义相同。
    
若想更深入的理解因果态的性质可以阅读James Crutchfield的两篇论文<ref name=":0" /><ref>Shalizi, C. R.. & Crutchfield, J. P. (2001). Computational Mechanics: Pattern and Prediction, Structure and
 
若想更深入的理解因果态的性质可以阅读James Crutchfield的两篇论文<ref name=":0" /><ref>Shalizi, C. R.. & Crutchfield, J. P. (2001). Computational Mechanics: Pattern and Prediction, Structure and
275

个编辑

导航菜单