更改

跳到导航 跳到搜索
删除46字节 、 2024年9月18日 (星期三)
第30行: 第30行:  
实际上,检测到的斑图通常是通过观察者选择的统计数据来隐含假定的,可能某些斑图的功能表现与现象的数学模型一致,但这些模型本身依赖于一系列理论假设。简而言之,在斑图形成领域,斑图通常是被猜测出来的,观察者通过固定的规律库预期这些结构,然后再进行验证。类似于通信频道的类比,观察者就像是一个已经手握密码本的接收者。任何未能通过密码本解码的信号本质上都是噪声,即观察者未能识别的斑图。
 
实际上,检测到的斑图通常是通过观察者选择的统计数据来隐含假定的,可能某些斑图的功能表现与现象的数学模型一致,但这些模型本身依赖于一系列理论假设。简而言之,在斑图形成领域,斑图通常是被猜测出来的,观察者通过固定的规律库预期这些结构,然后再进行验证。类似于通信频道的类比,观察者就像是一个已经手握密码本的接收者。任何未能通过密码本解码的信号本质上都是噪声,即观察者未能识别的斑图。
   −
在系统内部的协调行为中,有一种斑图涌现变得重要,即这些模式在系统的其他结构中显现其“新颖性”。由于没有外部的参照来定义新颖性或斑图,我们可以将这个过程称为内在涌现。在高效资本市场中,竞争性主体根据从集体行为中涌现出的最优定价控制其个人生产-投资和股票所有权策略。对于主体的资源配置决策而言,通过市场的集体行为涌现出的价格是准确的信号,完全反映了所有可用信息,这一点至关重要。内在涌现的独特之处在于形成的斑图赋予了系统额外的功能性,支持全局信息处理,如设定最优价格。这种方法的不同之处在于,它基于显式的方法来检测嵌入在非线性过程中的计算。更具体地说,以下假设是,在内在涌现过程中,内在计算能力的增加可以被利用,从而赋予系统额外的功能性。
+
在系统内部的协调行为中,有一种斑图涌现变得重要,即这些模式在系统的其他结构中显现其“新颖性”。由于没有外部的参照来定义新颖性或斑图,我们可以将这个过程称为内在涌现。在高效资本市场中,竞争性主体根据从集体行为中涌现出的最优定价控制其个人生产-投资和股票所有权策略。对于主体的资源配置决策而言,通过市场的集体行为涌现出的价格是准确的信号,完全反映了所有可用信息,这一点至关重要。内在涌现的独特之处在于形成的斑图赋予了系统额外的功能性,支持全局信息处理,如设定最优价格。这种方法可以直接嵌入系统非线性计算过程之中。更具体地说,假设在内在涌现过程中,内在计算能力的增加可以被利用,从而可以赋予系统额外的功能性。
    
=== '''进化的系统模型''' ===
 
=== '''进化的系统模型''' ===
 
可以用生物进化的思想来阐述内在涌现的问题,解释一个高度有序系统是怎么从混沌中涌现的,但是它在解释生命形式的多样性方面预测能力有限。因此要将系统限制在一个结构和生物特征明确的宇宙,并把它简化为包括一个环境和一组适应性的观察者或“智能体”。这样才能清晰地定义智能体的性质。智能体(Agent)试图构建和维持一个对其环境具有最大预测能力的内部模型。每个智能体的环境是其他智能体的集合,可以视为一个随机动力系统(Stochastic Dynamical Systems,简称SDS)。在任何给定的时刻,智能体感知到的是当前环境状态的投影。也就是说,环境状态被智能体的感官装置(传感器)所隐藏。随着时间的推移,感官装置产生一系列测量,这些测量引导智能体利用其可用资源(下图的基层)来构建内部环境模型。基于环境模型捕捉到的规律,智能体通过效应器采取行动,最终改变环境状态。如果智能体可以将测量结果尽可能划分随机和确定的部分,然后尽可能捕捉确定的规律,智能体就能利用环境中的更多规律,这种优势会提高智能体的生存能力。
 
可以用生物进化的思想来阐述内在涌现的问题,解释一个高度有序系统是怎么从混沌中涌现的,但是它在解释生命形式的多样性方面预测能力有限。因此要将系统限制在一个结构和生物特征明确的宇宙,并把它简化为包括一个环境和一组适应性的观察者或“智能体”。这样才能清晰地定义智能体的性质。智能体(Agent)试图构建和维持一个对其环境具有最大预测能力的内部模型。每个智能体的环境是其他智能体的集合,可以视为一个随机动力系统(Stochastic Dynamical Systems,简称SDS)。在任何给定的时刻,智能体感知到的是当前环境状态的投影。也就是说,环境状态被智能体的感官装置(传感器)所隐藏。随着时间的推移,感官装置产生一系列测量,这些测量引导智能体利用其可用资源(下图的基层)来构建内部环境模型。基于环境模型捕捉到的规律,智能体通过效应器采取行动,最终改变环境状态。如果智能体可以将测量结果尽可能划分随机和确定的部分,然后尽可能捕捉确定的规律,智能体就能利用环境中的更多规律,这种优势会提高智能体的生存能力。
 
[[文件:宇宙模型示意图.jpg|居中|无框|600x600像素]]
 
[[文件:宇宙模型示意图.jpg|居中|无框|600x600像素]]
 +
      第44行: 第45行:     
=== '''香农熵率''' ===
 
=== '''香农熵率''' ===
<nowiki>柯式复杂度[math]\displaystyle{ K(x) }[/math]是指在通用确定性图灵机(UTM)上运行时输出的最小程序所需的比特数。不同的程序语言描述同一程序的[math]\displaystyle{ K(x) }[/math]是可以比较的,但也无法确定哪种程序语言有最小的[math]\displaystyle{ K(x) }[/math],如果描述不同程序时程序语言的[math]\displaystyle{ K(x) }[/math]也各不相同,所以柯式复杂度通常是不可计算的。如果待测对象是由信息源(例如马尔可夫链)生成的离散符号序列[math]\displaystyle{ s^L }[/math] ,[math]\displaystyle{ L }[/math]为序列的长度,其柯式复杂度的香农熵率[math]\displaystyle{ h_μ }[/math]为:[math]\displaystyle{ \frac{K\left(s^{L}\right)}{L}\underset{L\to\infty}{\operatorname*{\operatorname*{\operatorname*{\rightarrow}}}}h_{\mu} }[/math],转化为公式形式为:[math]\displaystyle{ h_\mu=\lim_{L\to\infty}\frac{H(\Pr(s^L))}L }[/math],其中[math]\displaystyle{ Pr(s^L) }[/math]是[math]\displaystyle{ s^L }[/math]的边际分布,[math]\displaystyle{ H }[/math]是自信息的平均值,在建模框架中,[math]\displaystyle{ h_μ }[/math]是信息不确定性程度的归一化指标,信息的不确定性越高,香农熵率越大,在这里可以解释为智能体在预测序列[math]\displaystyle{ s^L }[/math]的后续符号时的误差率。</nowiki>
+
柯式复杂度[math]\displaystyle{ K(x) }[/math]是指在通用确定性图灵机(UTM)上运行时输出的最小程序所需的比特数。不同的程序语言描述同一程序的[math]\displaystyle{ K(x) }[/math]是可以比较的,但也无法确定哪种程序语言有最小的[math]\displaystyle{ K(x) }[/math],如果描述不同程序时程序语言的[math]\displaystyle{ K(x) }[/math]也各不相同,所以柯式复杂度通常是不可计算的。如果待测对象是由信息源(例如马尔可夫链)生成的离散符号序列[math]\displaystyle{ s^L }[/math] ,[math]\displaystyle{ L }[/math]为序列的长度,其柯式复杂度的香农熵率[math]\displaystyle{ h_μ }[/math]为:
 +
 
 +
<nowiki>[math]\displaystyle{ \frac{K\left(s^{L}\right)}{L}\underset{L\to\infty}{\operatorname*{\operatorname*{\operatorname*{\rightarrow}}}}h_{\mu} }[/math],转化为公式形式为:[math]\displaystyle{ h_\mu=\lim_{L\to\infty}\frac{H(\Pr(s^L))}L }[/math]</nowiki>
 +
 
 +
其中[math]\displaystyle{ Pr(s^L) }[/math]是[math]\displaystyle{ s^L }[/math]的边际分布,[math]\displaystyle{ H }[/math]是自信息的平均值,在建模框架中,[math]\displaystyle{ h_μ }[/math]是信息不确定性程度的归一化指标,信息的不确定性越高,香农熵率越大,在这里可以解释为智能体在预测序列[math]\displaystyle{ s^L }[/math]的后续符号时的误差率。
    
=== '''统计复杂度''' ===
 
=== '''统计复杂度''' ===
275

个编辑

导航菜单