更改

跳到导航 跳到搜索
添加51字节 、 2024年9月20日 (星期五)
第80行: 第80行:  
因果态是一种特殊的划分方法,它的划分函数记作<math>\epsilon</math>,公式为<math> \epsilon{:}\overleftarrow{S}\mapsto2^{\overset{\leftarrow}{S}}</math>,其中<math> 2^{\overset{\leftarrow}{S}}</math>是<math> \overleftarrow{S}</math>的幂集。根据因果态的定义,则存在如下关系:<math>\epsilon(\stackrel{\leftarrow}{s})\equiv\{\stackrel{\leftarrow}{s}^{\prime}|\mathrm{P}(\stackrel{\rightarrow}{S}=\stackrel{\rightarrow}{s}\mid\stackrel{\leftarrow}{S}=\stackrel{\leftarrow}{s})=\mathrm{P}(\stackrel{\rightarrow}{S}=\stackrel{\rightarrow}{s}\mid\stackrel{\leftarrow}{S}=\stackrel{\leftarrow}{s}^{\prime}),\mathrm{for~all~}\overrightarrow{s}\in\overrightarrow{S},\stackrel{\leftarrow}{s}^{\prime}\in\stackrel{\leftarrow}{S}\} </math>,其中<math>\mathcal{S} </math>为因果态的集合,<math>\stackrel{\leftarrow}{s} </math>为历史序列的随机变量,<math>\mathcal{S} </math>是<math>\mathcal{R} </math>的一种最优形式,因为<math>\mathcal{S} </math>的如下性质。
 
因果态是一种特殊的划分方法,它的划分函数记作<math>\epsilon</math>,公式为<math> \epsilon{:}\overleftarrow{S}\mapsto2^{\overset{\leftarrow}{S}}</math>,其中<math> 2^{\overset{\leftarrow}{S}}</math>是<math> \overleftarrow{S}</math>的幂集。根据因果态的定义,则存在如下关系:<math>\epsilon(\stackrel{\leftarrow}{s})\equiv\{\stackrel{\leftarrow}{s}^{\prime}|\mathrm{P}(\stackrel{\rightarrow}{S}=\stackrel{\rightarrow}{s}\mid\stackrel{\leftarrow}{S}=\stackrel{\leftarrow}{s})=\mathrm{P}(\stackrel{\rightarrow}{S}=\stackrel{\rightarrow}{s}\mid\stackrel{\leftarrow}{S}=\stackrel{\leftarrow}{s}^{\prime}),\mathrm{for~all~}\overrightarrow{s}\in\overrightarrow{S},\stackrel{\leftarrow}{s}^{\prime}\in\stackrel{\leftarrow}{S}\} </math>,其中<math>\mathcal{S} </math>为因果态的集合,<math>\stackrel{\leftarrow}{s} </math>为历史序列的随机变量,<math>\mathcal{S} </math>是<math>\mathcal{R} </math>的一种最优形式,因为<math>\mathcal{S} </math>的如下性质。
   −
性质(1)最大预测性————因果态集合<math>\mathcal{S} </math>在有效态集合<math>\mathcal{R} </math>的所有类型中,它的预测能力最强:对于所有有效态<math>\mathcal{R} </math>和正整数<math>L </math>,都有<math>H[\stackrel{\rightarrow}{S}^L|\mathcal{R}]\geq H[\stackrel{\rightarrow}{S}^L|\mathcal{S}] </math>,<math>\stackrel{\rightarrow}{S}^L </math>为<math>L </math>个长度的未来序列集合,<math>H[\stackrel{\rightarrow}{S}^L|\mathcal{R}] </math>和<math>H[\stackrel{\rightarrow}{S}^L|\mathcal{S}] </math>是<math>\stackrel{\rightarrow}{S}^L </math>的条件熵。它的证明过程如下:
+
性质1(因果态具有最大预测性):对于所有有效态<math>\mathcal{R} </math>和正整数<math>L </math>,都有<math>H[\stackrel{\rightarrow}{S}^L|\mathcal{R}]\geq H[\stackrel{\rightarrow}{S}^L|\mathcal{S}] </math>,<math>\stackrel{\rightarrow}{S}^L </math>为<math>L </math>个长度的未来序列集合,<math>H[\stackrel{\rightarrow}{S}^L|\mathcal{R}] </math>和<math>H[\stackrel{\rightarrow}{S}^L|\mathcal{S}] </math>是<math>\stackrel{\rightarrow}{S}^L </math>的条件熵。可以理解为因果态集合<math>\mathcal{S} </math>在有效态集合<math>\mathcal{R} </math>的所有类型中,它的预测能力最强,证明过程如下:
    
<math>\epsilon(\stackrel{\leftarrow}{s})\equiv\{\stackrel{\leftarrow}{s}^{\prime}|\mathrm{P}(\stackrel{\rightarrow}{S}=\stackrel{\rightarrow}{s}\mid\stackrel{\leftarrow}{S}=\stackrel{\leftarrow}{s})=\mathrm{P}(\stackrel{\rightarrow}{S}=\stackrel{\rightarrow}{s}\mid\stackrel{\leftarrow}{S}=\stackrel{\leftarrow}{s}^{\prime}) </math>
 
<math>\epsilon(\stackrel{\leftarrow}{s})\equiv\{\stackrel{\leftarrow}{s}^{\prime}|\mathrm{P}(\stackrel{\rightarrow}{S}=\stackrel{\rightarrow}{s}\mid\stackrel{\leftarrow}{S}=\stackrel{\leftarrow}{s})=\mathrm{P}(\stackrel{\rightarrow}{S}=\stackrel{\rightarrow}{s}\mid\stackrel{\leftarrow}{S}=\stackrel{\leftarrow}{s}^{\prime}) </math>
第92行: 第92行:  
<math>H[\stackrel{\rightarrow}{S}^L|\mathcal{R}]\geq H[\stackrel{\rightarrow}{S}^L|\mathcal{S}] </math>
 
<math>H[\stackrel{\rightarrow}{S}^L|\mathcal{R}]\geq H[\stackrel{\rightarrow}{S}^L|\mathcal{S}] </math>
   −
性质(2)最小复杂度————在相同预测能力的前提下,因果态集合<math>\mathcal{S} </math>在有效态集合<math>\mathcal{R} </math>的所有类型中,它的统计复杂度最小:设<math>\hat{\mathcal{R}} </math>为满足性质(1)中不等式等号成立的有效态,则对于所有的<math>\hat{\mathcal{R}} </math>,都有<math>C_\mu(\hat{\mathcal{R}})\geq C_\mu(\mathcal{S}) </math>
+
性质2(因果态具有最小统计复杂度):设<math>\hat{\mathcal{R}} </math>为满足性质1中不等式等号成立的有效态,则对于所有的<math>\hat{\mathcal{R}} </math>,都有<math>C_\mu(\hat{\mathcal{R}})\geq C_\mu(\mathcal{S}) </math>。可以理解为在相同预测能力的前提下,因果态集合<math>\mathcal{S} </math>在有效态集合<math>\mathcal{R} </math>的所有类型中,它的统计复杂度最小。
    
结合本条性质,公式<math>K(s^L )≈C_μ (s^L )+h_μ L </math>中求<math>C_μ (s^L ) </math>就是求<math>s^L </math>对应的因果态的统计复杂度,也就是说想要计算<math>C_μ (s^L ) </math>需要先找到<math>s^L </math>对应的因果态。上式也可以理解为:序列<math>s^L </math>的总信息量≈被归纳的因果态信息量+放弃归纳的随机信息量
 
结合本条性质,公式<math>K(s^L )≈C_μ (s^L )+h_μ L </math>中求<math>C_μ (s^L ) </math>就是求<math>s^L </math>对应的因果态的统计复杂度,也就是说想要计算<math>C_μ (s^L ) </math>需要先找到<math>s^L </math>对应的因果态。上式也可以理解为:序列<math>s^L </math>的总信息量≈被归纳的因果态信息量+放弃归纳的随机信息量
   −
性质(3)最小随机性————在相同预测能力的前提下,因果态集合[math]\displaystyle{ \mathcal{S} }[/math]在有效态集合[math]\displaystyle{ \mathcal{R} }[/math]的所有类型中,它的随机性最小:设<math>\hat{\mathcal{R}} </math>和<math>\hat{\mathcal{R}}^{\prime} </math>为满足性质(1)中不等式等号成立的有效态,则对于所有的<math>\hat{\mathcal{R}} </math>和<math>\hat{\mathcal{R}}^{\prime} </math>,都有<math>H[\hat{\mathcal{R}}^{\prime}|\hat{\mathcal{R}}]\geq H[\mathcal{S}^{\prime}|\mathcal{S}] </math>,其中<math>\hat{\mathcal{R}}^{\prime} </math>和<math>\mathcal{S}^{\prime} </math>分别是该过程的下一时刻有效态和下一时刻因果态。
+
性质3(因果态具有最小随机性):设<math>\hat{\mathcal{R}} </math>和<math>\hat{\mathcal{R}}^{\prime} </math>为满足性质1中不等式等号成立的有效态,则对于所有的<math>\hat{\mathcal{R}} </math>和<math>\hat{\mathcal{R}}^{\prime} </math>,都有<math>H[\hat{\mathcal{R}}^{\prime}|\hat{\mathcal{R}}]\geq H[\mathcal{S}^{\prime}|\mathcal{S}] </math>,其中<math>\hat{\mathcal{R}}^{\prime} </math>和<math>\mathcal{S}^{\prime} </math>分别是该过程的下一时刻有效态和下一时刻因果态。可以理解为在相同预测能力的前提下,因果态集合[math]\displaystyle{ \mathcal{S} }[/math]在有效态集合[math]\displaystyle{ \mathcal{R} }[/math]的所有类型中,它的随机性最小。
    
用[[互信息]]的角度去理解的话,上式等价于<math>I(\mathcal{S}^{\prime};\mathcal{S})\geq I(\hat{\mathcal{R}}^{\prime};\hat{\mathcal{R}}) </math>,可以理解为任意有效态对它自己下一时刻的互信息中,其中因果态的互信息最大,若不考虑[[Do演算|Do干预]],因果态和[[因果涌现|因果涌现理论]]中最大化[[有效信息]]所得到的宏观态意义相同。
 
用[[互信息]]的角度去理解的话,上式等价于<math>I(\mathcal{S}^{\prime};\mathcal{S})\geq I(\hat{\mathcal{R}}^{\prime};\hat{\mathcal{R}}) </math>,可以理解为任意有效态对它自己下一时刻的互信息中,其中因果态的互信息最大,若不考虑[[Do演算|Do干预]],因果态和[[因果涌现|因果涌现理论]]中最大化[[有效信息]]所得到的宏观态意义相同。
275

个编辑

导航菜单