第7行: |
第7行: |
| == 问题背景 == | | == 问题背景 == |
| | | |
− | === 自然和社会现象 === | + | === 自然和社会现象中的涌现 === |
| + | [[文件:蚊群-杨明哲-202409011.png|替代=|右|无框]] |
| + | 有一些自然和社会现象非常引人入胜,但也很令人困惑,比如行为简单的蚂蚁可以形成复杂的社会,在没有控制中心的情况下自发产生特异化的社会分工<ref>B. Holldobler and E. O. Wilson. ''The Ants.'' Belknap Press of Harvard University Press, Cambridge, Massachusetts, 1990.</ref>。经济中商品的最佳定价似乎源于主体遵守当地的商业规则<ref name=":0">E. F. Fama. Efficient capital markets II. ''J.'' ''Finance'', 46:1575 – 1617, 1991</ref>。这些现象中的全局协调是如何出现的?是否有共同的机制引导着这些不同现象的出现?在[[复杂系统 Complex Systems|复杂系统理论]]中把这类许多独立子系统相互作用后产生高度结构化的集体行为的现象称作[[涌现]]。 |
| | | |
− | [[文件:蚊群-杨明哲-202409011.png|无框]][[文件:集智公众号图片 20240901071124.gif|无框|344x344像素]]
| + | 目前对涌现的研究理论有基于有效信息的因果涌现理论、基于信息分解的因果涌现理论、基于奇异值分解的因果涌现理论,基于转移熵的动力学解耦理论、基于格兰杰因果的G-emergence理论等等。计算力学是基于统计复杂度对涌现的定量化研究理论,它提出的时间最早,虽然对涌现的的研究方法与上述理论均不同,但有很多研究思路是相似的,它定义的统计复杂度、因果态、斑图重构机器等概念可以对涌现的研究有很大启发和借鉴意义。 |
| | | |
− | [[复杂系统]]的涌现问题由来已久<ref name=":0">James P. Crutchfield, Karl Young. Inferring Statistical Complexity. PHYSICAL REVIEW LETTERS, VOLUME 63, NUMBER 2. 10 JULY 1989</ref><ref name=":1">James P. Crutchfield. The Calculi of Emergence: Computation, Dynamics, and Induction. SFI 94-03-016. 1994</ref><ref name=":2">James E. Hanson, James P. Crutchfield. Computational Mechanics of Cellular Automata: An Example. SFI WORKING PAPER: 1995-10-095</ref><ref name=":3">Cosma Rohilla Shalizi, James P. Crutchfield. Computational Mechanics: Pattern and Prediction, Structure and Simplicity. February 1, 2008</ref>。鸟群以步调一致地形式飞行。蚁群形成复杂的社会,产生特异化的社会分工。几个世纪前,木星大气中五彩斑斓的混沌运动形成了被称之为“大红斑”的巨大漩涡,至少已存在二百到三百五十年,期间还在不断地改变颜色和形状。
| + | === 计算力学中的涌现 === |
| | | |
− | 我们直觉中对这样的涌现现象的描述是有新东西冒出来了,比如社会、红斑等等。但是我们没能说明“新东西”是什么,以及它“新”在哪里。所以我们还需要更精确的语言对涌现现象进行识别和描述。
| + | 我们直觉中对涌现的定义就是系统出现了新的特征,但是这没有说明“新特征”是什么,以及它“新”在哪里。所以还需要更精确的语言对涌现的概念进行描述。 |
| | | |
− | === 不同层次的涌现 ===
| + | # 对涌现的直觉定义:系统中出现任何可以被称为新颖的特征。 |
− | | + | #'''[[斑图]]涌现(Pattern Formation)''':观察者在系统中识别出的有规律的结构。 |
− | 对于一个由很多智能体构成的复杂系统,我们从直觉出发,从模糊到精确,可以划分出对不同层次涌现的定义:
| + | #'''内在涌现(Intrinsic Emergence)''':[[系统]]本身捕捉并利用它自身出现的斑图。 |
− | | |
− | # 对涌现的直觉定义:系统中出现任何可以被称为新颖的特征,即系统有宏观的特征; | |
− | #'''斑图涌现(Pattern Formation)''':某一个外在的观察者,用某种编码方式在系统中发现[[斑图]]。 | |
− | #'''内在涌现(Intrinsic Emergence)''':[[系统]]本身(构成系统的智能体)捕捉并利用它自身出现的斑图。 | |
| | | |
| 下面我们用一些例子来说明对涌现不同层次的描述。 | | 下面我们用一些例子来说明对涌现不同层次的描述。 |
| | | |
− | 涌现通常被理解为一个过程,该过程导致出现的结构并未直接由控制系统的定义约束和瞬时力描述。比如一堆随机运动的粒子,虽然瞬时力可以用运动方程描述,但是从宏观尺度上会表现出压强、体积以及温度等新特征。我们需要明确特征是什么以及它新在哪里。否则这一概念几乎没有内容,因为几乎任何时间依赖的系统都会表现出涌现特征。
| + | 涌现通常被理解为一个过程,该过程导致出现的结构并未直接由控制系统的定义约束和瞬时力描述。比如一堆随机运动的粒子,虽然瞬时力可以用运动方程描述,但是从宏观尺度上会表现出压强、体积以及温度等新特征,这就是直觉上的涌现。 |
− | | |
− | 举两个例子来说明斑图涌现的特征,一个例子是确定性[[混沌理论|混沌]],确定性运动方程随着时间的推移导致了看似不可预测的行为。系统从初始条件映射到后来的状态,变得极为复杂,以至于观察者既无法足够准确地测量系统,也无法以有限的计算资源预测未来的行为。这种混沌的涌现既是非线性动力学系统复杂行为的产物,也是观测者能力的限制。另一个例子是二维的自避免[[随机游走]],粒子的逐步行为由随机方程直接规定:每次移动时,它朝随机方向移动,除非是刚刚离开的方向。经过一段时间,结果是路径描绘出一个[[自相似]]的分形结构。在这种情况下,[[分形结构]]从大部分随机的逐步运动中涌现出来。
| |
− | | |
− | 第一个例子的新增特征是不可预测性;第二个例子则是[[自相似]]性。在这两种情况下的新颖性都因其涌现特征与系统的定义特征直接对立而加剧:完全的确定性在混沌下隐藏,而几乎完全的随机性下则显现出自相似的有序性。但这些涌现特征对谁而言是“新”的呢?混沌动力学系统的状态在应用确定性函数时总是移动到唯一的下一个状态。显然,系统状态并不知道它的行为是不可预测的。对于随机游走,“分形特征”不在执行局部步骤的粒子“眼中”,这本身就是定义上的,两种情况下的新颖性都在于系统外的观察者眼中。
| |
| | | |
− | 实际上,检测到的斑图通常是通过观察者选择的统计数据来隐含假定的,可能某些斑图的功能表现与现象的数学模型一致,但这些模型本身依赖于一系列理论假设。简而言之,在斑图形成领域,斑图通常是被猜测出来的,观察者通过固定的规律库预期这些结构,然后再进行验证。类似于通信频道的类比,观察者就像是一个已经手握密码本的接收者。任何未能通过密码本解码的信号本质上都是噪声,即观察者未能识别的斑图。
| + | 在计算力学中,斑图通常指的是从时间序列中总结出的规律性结构。实际上,检测到的斑图通常是通过观察者选择的统计数据来隐含假定的,可能某些斑图的功能表现与其数学模型一致,但这些模型本身依赖于一系列理论假设。简而言之,在斑图形成领域,斑图通常是被猜测出来的,观察者通过固定的规律库预期这些结构,然后再进行验证。可以用通信频道做一个类比,观察者就像是一个已经手握密码本的接收者,任何未能通过密码本解码的信号本质上都是噪声,即观察者未能识别的斑图。 |
| | | |
− | 在系统内部的协调行为中,有一种斑图涌现变得重要,即这些模式在系统的其他结构中显现其“新颖性”。由于没有外部的参照来定义新颖性或斑图,我们可以将这个过程称为内在涌现。在高效资本市场中,竞争性主体根据从集体行为中涌现出的最优定价控制其个人生产-投资和股票所有权策略。对于主体的资源配置决策而言,通过市场的集体行为涌现出的价格是准确的信号,完全反映了所有可用信息,这一点至关重要。内在涌现的独特之处在于形成的斑图赋予了系统额外的功能性,支持全局信息处理,如设定最优价格。这种方法可以直接嵌入系统非线性计算过程之中。更具体地说,假设在内在涌现过程中,内在计算能力的增加可以被利用,从而可以赋予系统额外的功能性。
| + | 在系统内部的协调行为中,有一种斑图变得重要,即这种斑图在系统的其他结构中显现其“新颖性”。由于没有外部的参照来定义这种新颖性,我们可以将这个过程称为内在涌现。比如在高效资本市场中,竞争性主体根据从集体行为中涌现出的最优定价控制其个人生产-投资和股票所有权策略<ref name=":0" />。对于主体的资源配置决策而言,通过市场的集体行为涌现出的价格是准确的信号,完全反映了所有可用信息,这一点至关重要。内在涌现的独特之处在于形成的斑图赋予了系统额外的功能性,支持全局信息处理,如设定最优价格。更具体地说,内在涌现可以直接嵌入系统非线性计算过程之中,能够被系统直接利用,这样就赋予了系统额外的功能性。 |
| | | |
| === '''进化的系统模型''' === | | === '''进化的系统模型''' === |
− | 我们可以用生物进化的思想来阐述内在涌现的问题,解释一个高度有序系统是怎么从[[混沌理论|混沌]]中涌现的,但是它在解释生命形式的多样性方面预测能力有限。因此要将系统限制在一个结构和生物特征明确的确定性动力系统(Deterministic Dynamical Systems,简称DS)中,并把它简化为包括一个环境和一组适应性的观察者或“智能体”。这样才能清晰地定义智能体的性质。智能体(Agent)试图构建和维持一个对其环境具有最大预测能力的内部模型。每个智能体的环境是其他智能体的集合,可以视为一个随机[[动力系统理论 Dynamical Systems Theory|动力系统]](Stochastic Dynamical Systems,简称SDS)。在任何给定的时刻,智能体感知到的是当前环境状态的投影。也就是说,环境状态被智能体的感官装置(传感器)所隐藏。随着时间的推移,感官装置产生一系列测量,这些测量引导智能体利用其可用资源(下图的基层)来构建内部环境模型。基于环境模型捕捉到的规律,智能体通过效应器采取行动,最终改变环境状态。如果智能体可以将测量结果尽可能划分随机和确定的部分,然后尽可能捕捉确定的规律,智能体就能利用环境中的更多规律,这种优势会提高智能体的生存能力。 | + | 我们可以用生物进化的思想来阐述内在涌现的问题,解释一个高度有序系统是怎么从[[混沌理论|混沌]]中涌现的,但是它在解释生命形式的多样性方面预测能力有限。因此要将系统限制在一个结构和生物特征明确的确定性动力系统(Deterministic Dynamical Systems,简称DS)中,并把它简化为包括一个环境和一组适应性的观察者或“智能体”。这样才能清晰地定义智能体的性质。智能体(Agent)试图构建和维持一个对其环境具有最大预测能力的内部模型。每个智能体的环境是其他智能体的集合,可以视为一个随机[[动力系统理论 Dynamical Systems Theory|动力系统]](Stochastic Dynamical Systems,简称SDS)。在任何给定的时刻,智能体感知到的是当前环境状态的投影。也就是说,环境状态被智能体的感官装置(传感器)所隐藏。随着时间的推移,感官装置产生一系列测量,这些测量引导智能体利用其可用资源(下图的基层)来构建内部环境模型。基于环境模型捕捉到的规律,智能体通过效应器采取行动,最终改变环境状态。 |
| [[文件:宇宙模型示意图.jpg|居中|无框|600x600像素]] | | [[文件:宇宙模型示意图.jpg|居中|无框|600x600像素]] |
| | | |
第150行: |
第144行: |
| | | |
| === 逻辑斯谛映射 === | | === 逻辑斯谛映射 === |
− | 接下来将采用具体的方法来演示如何将计算力学的理论应用于实际案例<ref name=":1" />,要演示的是混沌动力学中的[[Logistic映射|逻辑斯谛映射]](logistic map),特别是其周期倍增的混沌路径。用于重建模型的数据流来自逻辑斯谛映射的轨迹,轨迹是通过迭代映射<math>x_{n+1}=f(x_n)</math>生成的,迭代函数为<math>f(x) = rx(1-x)</math>,其中非线性参数<math>\begin{matrix}r&\in&[0,4]\end{matrix}</math>,初始条件<math>x_0\in[0,1]</math>,迭代函数的最大值出现在<math>x_c = \frac12</math>。 | + | 接下来将采用具体的方法来演示如何将计算力学的理论应用于实际案例<ref name=":1">James P. Crutchfield. The Calculi of Emergence: Computation, Dynamics, and Induction. SFI 94-03-016. 1994</ref>,要演示的是混沌动力学中的[[Logistic映射|逻辑斯谛映射]](logistic map),特别是其周期倍增的混沌路径。用于重建模型的数据流来自逻辑斯谛映射的轨迹,轨迹是通过迭代映射<math>x_{n+1}=f(x_n)</math>生成的,迭代函数为<math>f(x) = rx(1-x)</math>,其中非线性参数<math>\begin{matrix}r&\in&[0,4]\end{matrix}</math>,初始条件<math>x_0\in[0,1]</math>,迭代函数的最大值出现在<math>x_c = \frac12</math>。 |
| [[文件:逻辑斯谛曲线.jpg|居中|无框|300x300px|替代=]] | | [[文件:逻辑斯谛曲线.jpg|居中|无框|300x300px|替代=]] |
| 上图为迭代函数<math>f(x) = rx(1-x)</math>中<math>r</math>与<math>x</math>的关系图,当<math>r<3.5699...</math>时函数存在倍周期现象,当<math>r>3.5699...</math>时会出现混沌现象。由于观察者观测的精细程度有限,若要识别混沌中的有序结构,就需要对<math>x</math>进行粗粒化操作,方法是通过二元分割观察轨迹<math>\mathbf{x}=x_0x_1x_2x_3\ldots </math> ,将其转换为离散序列<math>\mathcal{P}=\{x_n\in[0,x_c)\Rightarrow s=0,x_n\in[x_c,1]\Rightarrow s=1\} </math>,这种划分是“生成”的,这意味着足够长的二进制序列来自任意小的初始条件间隔。因此,可以使用粗粒化的观测<math>\mathcal{P} </math>来研究逻辑斯谛映射中的信息处理。 | | 上图为迭代函数<math>f(x) = rx(1-x)</math>中<math>r</math>与<math>x</math>的关系图,当<math>r<3.5699...</math>时函数存在倍周期现象,当<math>r>3.5699...</math>时会出现混沌现象。由于观察者观测的精细程度有限,若要识别混沌中的有序结构,就需要对<math>x</math>进行粗粒化操作,方法是通过二元分割观察轨迹<math>\mathbf{x}=x_0x_1x_2x_3\ldots </math> ,将其转换为离散序列<math>\mathcal{P}=\{x_n\in[0,x_c)\Rightarrow s=0,x_n\in[x_c,1]\Rightarrow s=1\} </math>,这种划分是“生成”的,这意味着足够长的二进制序列来自任意小的初始条件间隔。因此,可以使用粗粒化的观测<math>\mathcal{P} </math>来研究逻辑斯谛映射中的信息处理。 |