更改
跳到导航
跳到搜索
←上一编辑
下一编辑→
因果涌现
(查看源代码)
2024年10月30日 (三) 08:22的版本
添加19字节
、
2024年10月30日 (星期三)
→马尔科夫链实例
第132行:
第132行:
在文献<ref name=":0"/>中,Hoel给出一个含有8个状态的马尔科夫链的状态转移矩阵([math]f_m[/math])的例子,如下面左图所示。其中前7个状态之间等概率转移,最后一个状态是独立的,只能转变为自身的状态。
在文献<ref name=":0"/>中,Hoel给出一个含有8个状态的马尔科夫链的状态转移矩阵([math]f_m[/math])的例子,如下面左图所示。其中前7个状态之间等概率转移,最后一个状态是独立的,只能转变为自身的状态。
−
对该矩阵的粗粒化为如下操作:首先,将前7个状态归并为一个宏观状态,不妨称为A,并且将[math]f_m[/math]
中前7行的前7列的概率数值加总得到宏观态A到A状态转移的概率,并对
[math]f_m[/math]矩阵的其它数值保持不变。这样归并后的新的概率转移矩阵如右图所示,记为[math]f_M[/math]。这是一个确定的宏观马尔科夫转移矩阵,即系统的未来状态完全可以由当前状态决定。此时<math>EI(f_M\ )>EI(f_m\ ) </math>,系统发生了因果涌现。
+
对该矩阵的粗粒化为如下操作:首先,将前7个状态归并为一个宏观状态,不妨称为A,并且将[math]f_m[/math]
中前7行的前7列的概率数值加总再除以7,从而得到宏观态A到A的状态转移概率,并对
[math]f_m[/math]矩阵的其它数值保持不变。这样归并后的新的概率转移矩阵如右图所示,记为[math]f_M[/math]。这是一个确定的宏观马尔科夫转移矩阵,即系统的未来状态完全可以由当前状态决定。此时<math>EI(f_M\ )>EI(f_m\ ) </math>,系统发生了因果涌现。
[[文件:状态空间中的因果涌现1.png|居左|500x500像素|状态空间上的因果涌现|替代=]]
[[文件:状态空间中的因果涌现1.png|居左|500x500像素|状态空间上的因果涌现|替代=]]
Jake
786
个编辑
导航菜单
个人工具
登录
名字空间
页面
讨论
变种
视图
阅读
查看源代码
查看历史
更多
搜索
导航
集智百科
集智主页
集智斑图
集智学园
最近更改
所有页面
帮助
工具
特殊页面
可打印版本