计算力学的目标是建立一个模型,希望以一定的准确度的方式重建和预测观察到的随机序列。然而,序列的随机性使我们无法获得完美的重建,因此,我们需要一个粗粒化的映射来捕获随机序列中的有序结构。这个粗粒化映射可以用一个划分函数<math>\eta: \overleftarrow{S}→\mathcal{R}</math>来刻画,该函数可以将<math>\overleftarrow{S}</math>划分为相互排斥的若干子集(所有的互斥子集形成全集),形成的集合记为<math>\mathcal{R}</math>。 | 计算力学的目标是建立一个模型,希望以一定的准确度的方式重建和预测观察到的随机序列。然而,序列的随机性使我们无法获得完美的重建,因此,我们需要一个粗粒化的映射来捕获随机序列中的有序结构。这个粗粒化映射可以用一个划分函数<math>\eta: \overleftarrow{S}→\mathcal{R}</math>来刻画,该函数可以将<math>\overleftarrow{S}</math>划分为相互排斥的若干子集(所有的互斥子集形成全集),形成的集合记为<math>\mathcal{R}</math>。 |