部分信息分解技术的进步使得进一步分析变量之间的互信息成为可能,从而从多个角度更深入地理解系统属性。在Varley等人的研究中,作者应用部分信息分解来分解系统的互信息。他们使用Williams和Beer提出的方法计算了一个协同偏差指标,以评估协同信息如何在系统的不同层级之间分布。更高的协同偏差表明在协同关系中涉及更多的部分信息。随后,作者观察到,在某些表现出因果涌现的系统中,当系统被简化或减少时,协同偏差会增加。这表明随着我们对系统进行粗粒度化处理,部分信息从冗余转变为协同。得出的总体结论是,涌现可以被理解为一种信息转换的形式。 | 部分信息分解技术的进步使得进一步分析变量之间的互信息成为可能,从而从多个角度更深入地理解系统属性。在Varley等人的研究中,作者应用部分信息分解来分解系统的互信息。他们使用Williams和Beer提出的方法计算了一个协同偏差指标,以评估协同信息如何在系统的不同层级之间分布。更高的协同偏差表明在协同关系中涉及更多的部分信息。随后,作者观察到,在某些表现出因果涌现的系统中,当系统被简化或减少时,协同偏差会增加。这表明随着我们对系统进行粗粒度化处理,部分信息从冗余转变为协同。得出的总体结论是,涌现可以被理解为一种信息转换的形式。 |