− | 其中<math> \Pr(s^L)</math>是[math]\displaystyle{ s^L }[/math]的边际分布,[math]\displaystyle{ H }[/math]是[[Shannon熵]],也就是[[自信息]]的平均值,在建模框架中,[math]\displaystyle{ h_μ }[/math]是信息不确定性程度的归一化指标,信息的不确定性越高,香农熵率越大,在这里可以解释为智能体在预测序列[math]\displaystyle{ s^L }[/math]的后续符号时的误差率。 | + | 其中<math> \Pr(s^L)</math>是[math]\displaystyle{ s^L }[/math]的边际分布,[math]\displaystyle{ H }[/math]是[[Shannon熵]],也就是[[自信息]]的平均值,在建模框架中,[math]\displaystyle{ h_μ }[/math]是信息不确定性程度的归一化指标,信息的不确定性越高,香农熵率越大,在这里可以解释为智能体在预测序列[math]\displaystyle{ s^L }[/math]的后续符号时的误差率。我们可以用香农熵率来监测智能体对外部环境的适应能力,智能体的香农熵率越接近外部环境的香农熵率,说明它的适应能力就越强。 |