更改

跳到导航 跳到搜索
添加24字节 、 2024年11月5日 (星期二)
第101行: 第101行:  
===因果态的定义===
 
===因果态的定义===
   −
智能体对环境的测量精度一般都是有限的,测量结果只能描述环境接近真实状态的“隐藏状态(hidden environmental states)”,智能体需要对测量结果[[粗粒化]]后才能识别“隐藏状态”中的斑图。若将测量对象过去未来的所有信息视为限制在离散值、离散时间上的稳定[[随机过程]],用双无限序列可数集合<math>\overleftrightarrow{S}=⋯s_{-2} s_{-1} s_0 s_1 s_2…</math>表示,则测量结果为<math>\overleftrightarrow{S}</math>中任意随机变量的序列。基于时间<math>t</math>可以将<math>\overleftrightarrow{S}</math>分为单侧前向序列<math>s_t^→=s_t s_{t+1} s_{t+2} s_{t+3}…</math>和单侧后向序列<math>s_t^←=⋯s_{t-3} s_{t-2} s_{t-1} </math>两个部分,所有可能的未来序列<math>s_t^→</math>形成的集合记作<math> \overrightarrow{S}</math>,所有可能的历史序列<math>\overleftarrow{s_t}</math>形成的集合记作<math> \overleftarrow{S}</math>。
+
智能体对环境的测量精度一般都是有限的,测量结果只能描述环境状态的投影,可以把这个投影称作“隐藏状态(hidden environmental states)”,智能体需要对测量结果[[粗粒化]]后才能识别“隐藏状态”中的斑图。若将测量对象过去未来的所有信息视为限制在离散值、离散时间上的稳定[[随机过程]],用双无限序列可数集合<math>\overleftrightarrow{S}=⋯s_{-2} s_{-1} s_0 s_1 s_2…</math>表示,则测量结果为<math>\overleftrightarrow{S}</math>中任意随机变量的序列。基于时间<math>t</math>可以将<math>\overleftrightarrow{S}</math>分为单侧前向序列<math>s_t^→=s_t s_{t+1} s_{t+2} s_{t+3}…</math>和单侧后向序列<math>s_t^←=⋯s_{t-3} s_{t-2} s_{t-1} </math>两个部分,所有可能的未来序列<math>s_t^→</math>形成的集合记作<math> \overrightarrow{S}</math>,所有可能的历史序列<math>\overleftarrow{s_t}</math>形成的集合记作<math> \overleftarrow{S}</math>。
    
按照一定的划分方法( partition)将<math> \overset{\leftarrow}{S}</math>划分为若干个互斥且全面的子集,那么每个子集就是一个有效态(effective state),这些有效态的集合记作<math>\mathcal{R} </math>,划分方法可以是任意函数映射<math> η </math>,用公式表示为<math> \eta{:}\overleftarrow{S}\mapsto\mathcal{R}</math>,也可以将有效态理解为将<math> \overset{\leftarrow}{S}</math>中的某段序列[[马尔科夫链的粗粒化|粗粒化]]后得到的宏观态。
 
按照一定的划分方法( partition)将<math> \overset{\leftarrow}{S}</math>划分为若干个互斥且全面的子集,那么每个子集就是一个有效态(effective state),这些有效态的集合记作<math>\mathcal{R} </math>,划分方法可以是任意函数映射<math> η </math>,用公式表示为<math> \eta{:}\overleftarrow{S}\mapsto\mathcal{R}</math>,也可以将有效态理解为将<math> \overset{\leftarrow}{S}</math>中的某段序列[[马尔科夫链的粗粒化|粗粒化]]后得到的宏观态。
275

个编辑

导航菜单