更改
跳到导航
跳到搜索
←上一编辑
下一编辑→
复杂网络中的因果涌现
(查看源代码)
2024年11月9日 (六) 14:03的版本
添加2字节
、
2024年11月9日 (星期六)
→检验动力学的一致性
第144行:
第144行:
[[动力学的一致性检验]]可以进一步验证[[HOMs]]方法的有效性。它的基本思想是,比较宏微观网络节点在任意时刻t的概率分布的[[KL散度]]之和。
[[动力学的一致性检验]]可以进一步验证[[HOMs]]方法的有效性。它的基本思想是,比较宏微观网络节点在任意时刻t的概率分布的[[KL散度]]之和。
−
在微观网络<math>
G
</math>与宏观网络<math>
G_M
</math>
上
[[随机游走]],在未来某个时间<math>t </math> , <math>G </math>上的预期分布为 <math>P_m(t) </math>, <math>G_M </math>上的预期分布为 <math>P_M(t) </math>。将<math>P_m(t) </math>分布叠加到宏观上<math>G_M </math>的相同节点上,得到<math>P_{M|m}(t) </math>分布。用<math>P_M(t) </math>和<math>P_{M|m}(t) </math>之间的KL散度来衡量其不一致性(inconsistency),若结果为零则动力学一致。公式为:
+
在微观网络<math>
A
</math>与宏观网络<math>
B
</math>
上进行
[[随机游走]],在未来某个时间<math>t </math> , <math>G </math>上的预期分布为 <math>P_m(t) </math>, <math>G_M </math>上的预期分布为 <math>P_M(t) </math>。将<math>P_m(t) </math>分布叠加到宏观上<math>G_M </math>的相同节点上,得到<math>P_{M|m}(t) </math>分布。用<math>P_M(t) </math>和<math>P_{M|m}(t) </math>之间的KL散度来衡量其不一致性(inconsistency),若结果为零则动力学一致。公式为:
<math>inconsistency=\sum_{t=0}^T D_{KL}[P_M(t)||P_{M|m}(t)]</math>
<math>inconsistency=\sum_{t=0}^T D_{KL}[P_M(t)||P_{M|m}(t)]</math>
相信未来
2,435
个编辑
导航菜单
个人工具
登录
名字空间
页面
讨论
变种
视图
阅读
查看源代码
查看历史
更多
搜索
导航
集智百科
集智主页
集智斑图
集智学园
最近更改
所有页面
帮助
工具
特殊页面
可打印版本