更改

跳到导航 跳到搜索
第259行: 第259行:  
== 变量角度的因果涌现 ==
 
== 变量角度的因果涌现 ==
 
下面从变量角度,分别给出了空间、时间和时空因果涌现的布尔网络实例,从微观系统机制、粗粒化映射和宏观尺度分析三个方面进行描述和分析。注:[math]S_m[/math]表示微观系统;[math]S_M[/math]表示粗粒化得到的宏观系统。微观元素是布尔值且用拉丁字母[math]\{A, B, C…\}[/math]标记,宏观元素用希腊字母[math]\{α, β, γ. .\}[/math]标记。微观状态标记为[math]\{1,0\}[/math],宏观状态标记为{“on”,“bursting”,“quiet”…}。
 
下面从变量角度,分别给出了空间、时间和时空因果涌现的布尔网络实例,从微观系统机制、粗粒化映射和宏观尺度分析三个方面进行描述和分析。注:[math]S_m[/math]表示微观系统;[math]S_M[/math]表示粗粒化得到的宏观系统。微观元素是布尔值且用拉丁字母[math]\{A, B, C…\}[/math]标记,宏观元素用希腊字母[math]\{α, β, γ. .\}[/math]标记。微观状态标记为[math]\{1,0\}[/math],宏观状态标记为{“on”,“bursting”,“quiet”…}。
  −
注意:以下实例图中的确定性(Determinism)和简并性(Degeneracy)计算均进行了归一化,即除以[math]log_2 N[/math],其中N为状态空间的大小。
      
=== 空间因果涌现 ===
 
=== 空间因果涌现 ===
第271行: 第269行:  
'''粗粒化映射''':从图C可以看出,这个概率转移矩阵非常复杂,同时矩阵本身也有一些规律可循,比如前12行和后4行的模式差异较大,前12行中每4行的模式都是重复的。因此思考是否可以提炼出其中的规律,更加高效地表达系统间的状态转移模式。首先可以看系统内是有分组机制,四个元素被分为了两组,每组都接受另一组元素的输入且响应机制相同,同组元素的状态之间不会互相影响,因此同组元素之间是独立等价的,可以被映射或归类为同一个宏观元素。微观系统[math]S_m = \{ABCD\}[/math]可以被粗粒化为有两个元素[math]{α, β}[/math]的宏观系统[math]S_M[/math]。考虑微观状态的转移机制(图A右侧),输入值00,01和10决定状态的规则相同,输入值11对应另一种,因此每个宏观元素状态可以映射为{"off" ,"on"}两种(图B,D)。
 
'''粗粒化映射''':从图C可以看出,这个概率转移矩阵非常复杂,同时矩阵本身也有一些规律可循,比如前12行和后4行的模式差异较大,前12行中每4行的模式都是重复的。因此思考是否可以提炼出其中的规律,更加高效地表达系统间的状态转移模式。首先可以看系统内是有分组机制,四个元素被分为了两组,每组都接受另一组元素的输入且响应机制相同,同组元素的状态之间不会互相影响,因此同组元素之间是独立等价的,可以被映射或归类为同一个宏观元素。微观系统[math]S_m = \{ABCD\}[/math]可以被粗粒化为有两个元素[math]{α, β}[/math]的宏观系统[math]S_M[/math]。考虑微观状态的转移机制(图A右侧),输入值00,01和10决定状态的规则相同,输入值11对应另一种,因此每个宏观元素状态可以映射为{"off" ,"on"}两种(图B,D)。
   −
'''宏观尺度''':宏观系统现在由2个元素组成,每个元素由2个状态,所以宏观系统整体共有[math]2^2=4[/math]个可能的状态。将系统以等概率设置为所有可能的宏观状态,根据宏观的转移规则,可以得到 4 × 4 的[math]S_M[/math] 概率转移矩阵(图E)。由图E可见,矩阵规模减小,但是状态间的转移规律更明确。计算得到宏观尺度下[math]EI(S_M) = 1.55 \text{ bits}[/math],高于微观尺度的[math]EI(S_m) = 1.15 \text{ bits}[/math]。因此,因果涌现度量[math]CE(S) = EI(S_M) - EI(S_m) = 0.40 \text{ bits}[/math],宏观的因果性优于微观,因果涌现发生。
+
'''宏观尺度''':宏观系统现在由2个元素组成,每个元素由2个状态,所以宏观系统整体共有[math]2^2=4[/math]个可能的状态。将系统以等概率设置为所有可能的宏观状态,根据宏观的转移规则,可以得到 4 × 4 的[math]S_M[/math] 概率转移矩阵(图E)。由图E可见,矩阵规模减小,但是状态间的转移规律更明确。宏观尺度下[math]EI(S_M) = Det(S_M) - Deg(S_M) = 1.56 - 0.01 = 1.55 \text{ bits}[/math],[math]Eff(S_M) = 0.78[/math],高于微观尺度的[math]EI(S_m) = 1.15 \text{ bits}[/math]。因此,因果涌现度量[math]CE(S) = EI(S_M) - EI(S_m) = 0.40 \text{ bits}[/math],宏观的因果性优于微观,因果涌现发生。
   −
[math]S_M[/math]的概率转移矩阵更接近于完美的有效性([math]Eff(S_M) = 0.78[/math])。本例中,在宏观尺度的有效性[math]\Delta I_{Eff}[/math]的增益主要来自于减少噪声干扰,即确定性(Det)提高([math]Det(S_m) = 0.34[/math]; [math]Det(S_M) = 0.78[/math]),少部分来源于简并性(Deg)减少([math]Deg(S_m) = 0.05[/math]; [math]Deg(S_M) = 0.006[/math])。
+
本例中,在宏观尺度的有效性[math]\Delta I_{Eff}[/math]的增益主要来自于减少噪声干扰,即确定性提高(归一化后:[math]Det(S_m) = 0.34[/math]; [math]Det(S_M) = 0.78[/math]),少部分来源于简并性减少(归一化后:[math]Deg(S_m) = 0.05[/math]; [math]Deg(S_M) = 0.006[/math])。
    
[[文件:空间因果涌现(抵消不确定性).png|无框|居左|400x400像素]]
 
[[文件:空间因果涌现(抵消不确定性).png|无框|居左|400x400像素]]
2,435

个编辑

导航菜单