'''粗粒化映射''':从图C可以看出,这个概率转移矩阵非常复杂,同时矩阵本身也有一些规律可循,比如前12行和后4行的模式差异较大,前12行中每4行的模式都是重复的。因此思考是否可以提炼出其中的规律,更加高效地表达系统间的状态转移模式。首先可以看系统内是有分组机制,四个元素被分为了两组,每组都接受另一组元素的输入且响应机制相同,同组元素的状态之间不会互相影响,因此同组元素之间是独立等价的,可以被映射或归类为同一个宏观元素。微观系统[math]S_m = \{ABCD\}[/math]可以被粗粒化为有两个元素[math]{α, β}[/math]的宏观系统[math]S_M[/math]。考虑微观状态的转移机制(图A右侧),输入值00,01和10决定状态的规则相同,输入值11对应另一种,因此每个宏观元素状态可以映射为{"off" ,"on"}两种(图B,D)。 | '''粗粒化映射''':从图C可以看出,这个概率转移矩阵非常复杂,同时矩阵本身也有一些规律可循,比如前12行和后4行的模式差异较大,前12行中每4行的模式都是重复的。因此思考是否可以提炼出其中的规律,更加高效地表达系统间的状态转移模式。首先可以看系统内是有分组机制,四个元素被分为了两组,每组都接受另一组元素的输入且响应机制相同,同组元素的状态之间不会互相影响,因此同组元素之间是独立等价的,可以被映射或归类为同一个宏观元素。微观系统[math]S_m = \{ABCD\}[/math]可以被粗粒化为有两个元素[math]{α, β}[/math]的宏观系统[math]S_M[/math]。考虑微观状态的转移机制(图A右侧),输入值00,01和10决定状态的规则相同,输入值11对应另一种,因此每个宏观元素状态可以映射为{"off" ,"on"}两种(图B,D)。 |