# 针对邻接矩阵<math>A</math>,得到其[[转移矩阵]]<math>W</math>,然后进行矩阵的[[特征值分解]],得到特征值集合<math>Λ=\{λ_i\}^N_{i=1}</math>与特征向量集合<math>E=\{e_i\}^N_{i=1}</math>,通过去除特征值为0的特征向量并且通过特征值对对应的特征向量进行加权,构建新的有偏的特征向量集合<math>E’=\{λ_ie_i|λ_i≠0\}^N_{i=1}</math>(新的网络节点数量为<math>N'=rank(A)</math>)。直观地说,忽略特征值为0的特征向量是有意义的,因为它对应网络中的简并性,并且非零特征值和相应的特征向量包含了丰富的网络拓扑结构信息; | # 针对邻接矩阵<math>A</math>,得到其[[转移矩阵]]<math>W</math>,然后进行矩阵的[[特征值分解]],得到特征值集合<math>Λ=\{λ_i\}^N_{i=1}</math>与特征向量集合<math>E=\{e_i\}^N_{i=1}</math>,通过去除特征值为0的特征向量并且通过特征值对对应的特征向量进行加权,构建新的有偏的特征向量集合<math>E’=\{λ_ie_i|λ_i≠0\}^N_{i=1}</math>(新的网络节点数量为<math>N'=rank(A)</math>)。直观地说,忽略特征值为0的特征向量是有意义的,因为它对应网络中的简并性,并且非零特征值和相应的特征向量包含了丰富的网络拓扑结构信息; |