更改

跳到导航 跳到搜索
第83行: 第83行:     
===粗粒化复杂网络===  
 
===粗粒化复杂网络===  
为了识别复杂网络中的因果涌现,需要有两个步骤:1)对网络进行[[粗粒化]];2)根据分组方式构建宏观网络,然后比较宏观网络与微观网络的有效信息,判断能否发生因果涌现。粗粒化方法包括:[[贪婪算法]]、[[谱分解方法]]以及[[梯度下降]]方法。Klein等人<ref name=":0" />利用贪婪算法构建了宏观尺度的网络,发现对于大规模网络其效率很低。Griebenow 等人<ref>Griebenow R, Klein B, Hoel E. Finding the right scale of a network: efficient identification of causal emergence through spectral clustering[J]. arXiv preprint arXiv:190807565, 2019.</ref>提出了一种基于谱分解的方法,并应用于[[偏好依附网络]]。相较于贪婪算法以及梯度下降算法,谱分解算法的计算时间更少,同时找到的宏观网络也更好(EI更大)。为了保证分组后的宏观网络与原始的微观网络具有相同的动力学,使用高阶节点显式地对高阶依赖项建模([[HOMs]])<ref>Xu, J., Wickramarathne, T. L., & Chawla, N. V. Representing higher-order dependencies in networks[J]. Science advances, 2016, 2(5), e1600028.</ref>来构建宏观网络。下面分别详细介绍这两个步骤:
+
为了识别复杂网络中的因果涌现,需要有两个步骤:1)对原始网络的节点进行分组;2)根据节点分组,进行网络的粗粒化,从而得到一个宏观网络。最后,通过比较宏观网络与微观网络的有效信息,判断能否发生因果涌现。
 +
 
 +
其中,节点分组的目的是确定哪些原始网络的节点应该被归并为一个宏观节点;而网络粗粒化的目的是根据被归并的这些原始网络节点,以及附着在它们之上的连边,确定分组后的宏观节点彼此之间如何构建连边,从而形成一个比原始网络更小,但却并不丢失原始网络主要特征的粗粒化网络。
 +
 
 +
在Klein等人的论文<ref name=":0"/>,以及Griebenow 等人<ref name=":Griebenow">Griebenow R, Klein B, Hoel E. Finding the right scale of a network: efficient identification of causal emergence through spectral clustering[J]. arXiv preprint arXiv:190807565, 2019.</ref>的文献中,作者们主要提出了三种粗粒化网络的方法,包括:[[贪婪算法]]、[[谱分解方法]]以及[[梯度下降]]方法。这三种方法最大的不同就在于节点分组方案的不同,至于如何归并节点和网络则采用了相同的处理手段。
 +
 
 +
Klein等人<ref name=":0" />利用贪婪算法对节点进行分组,这种方法对于大规模网络其效率很低。而Griebenow<ref name=":Griebenow"/>又提出了一种基于谱分解的方法来对原始网络节点进行分组,并将这种方法应用于[[偏好依附网络]]。相较于贪婪算法以及梯度下降算法,谱分解算法的计算时间更少,同时找到的宏观网络也更好(EI更大)。
 +
 
 +
为了保证分组后的宏观网络与原始的微观网络具有相同的动力学,使用高阶节点显式地对高阶依赖项建模([[HOMs]])<ref>Xu, J., Wickramarathne, T. L., & Chawla, N. V. Representing higher-order dependencies in networks[J]. Science advances, 2016, 2(5), e1600028.</ref>来构建宏观网络。下面分别详细介绍这两个步骤:
    
====粗粒化算法====
 
====粗粒化算法====
905

个编辑

导航菜单