更改

跳到导航 跳到搜索
添加1,017字节 、 2024年11月28日 (星期四)
第50行: 第50行:  
上图为某种划分的示意图,将集合<math> \overset{\leftarrow}{S}</math>划分为某类状态<math> \mathcal{R}=\{\mathcal{R}_i:i=1,2,3,4\}</math>,值得注意的是,<math> \mathcal{R}_i</math>不必形成紧致集,也可以是康托集或其他更特殊的结构,上图为了示意清楚才这样画的。
 
上图为某种划分的示意图,将集合<math> \overset{\leftarrow}{S}</math>划分为某类状态<math> \mathcal{R}=\{\mathcal{R}_i:i=1,2,3,4\}</math>,值得注意的是,<math> \mathcal{R}_i</math>不必形成紧致集,也可以是康托集或其他更特殊的结构,上图为了示意清楚才这样画的。
   −
对于集合<math> \overset{\leftarrow}{S}</math>的划分可以有很多种,若某一种划分能够在预测能力最强的同时消耗的计算资源最少,那么它肯定是最优的划分,我们把这种用最优的划分方法得到的状态称为因果态。因果态就是智能体对测量结果进行处理后,根据其内部模型(尤其是状态结构)识别出的斑图,并且这种斑图不随时间发生变化。形式化定义为:对于任意的时刻<math>t </math> 和<math>t^{'} </math>,给定过去状态<math> s_t^←  </math>的条件下,未来状态<math> s^→ </math>的分布与给定过去状态<math> s_{t^{'}}^←  </math>的条件下,未来状态<math> s^→ </math>的分布相同。那么<math>t </math> 和<math>t^{'} </math>的关系就记作<math>t∼t^{'} </math>,“<math>∼ </math> ” 表示由等效未来状态所引起的等价关系,可以用公式表示为:<math>t∼t^{'} \triangleq Pr(s^→ |s_t^← )=Pr(s^→ |s_{t^{'}}^← ) </math>,若<math>t </math> 和<math>t^{'} </math>对未来状态预测的分布相同,则定义他们具有相同的因果态(casual state)。
+
对于集合<math> \overset{\leftarrow}{S}</math>的划分可以有很多种,若某一种划分能够在预测能力最强的同时消耗的计算资源最少,那么它肯定是最优的划分,我们把这种用最优的划分方法得到的状态称为因果态。因果态就是智能体对测量结果进行处理后,根据其内部模型(尤其是状态结构)识别出的斑图,并且这种斑图不随时间发生变化。形式化定义为:对于任意的时刻<math>t </math> 和<math>t^{'} </math>,给定过去状态<math> s_t^←  </math>的条件下,未来状态<math> s^→ </math>的分布与给定过去状态<math> s_{t^{'}}^←  </math>的条件下,未来状态<math> s^→ </math>的分布相同。那么<math>t </math> 和<math>t^{'} </math>的关系就记作<math>t∼t^{'} </math>,“<math>∼ </math> ” 表示由等效未来状态所引起的等价关系,也叫预测等价性(predictive equivalence),可以用公式表示为:<math>t∼t^{'} \triangleq Pr(s^→ |s_t^← )=Pr(s^→ |s_{t^{'}}^← ) </math>,若<math>t </math> 和<math>t^{'} </math>对未来状态预测的分布相同,则定义他们具有相同的因果态(casual state)。
    
因果态的划分映射可以记作<math>\epsilon</math>,公式为<math> \epsilon{:}\overleftarrow{S}\mapsto2^{\overset{\leftarrow}{S}}</math>,其中<math> 2^{\overset{\leftarrow}{S}}</math>是<math> \overleftarrow{S}</math>的幂集。根据因果态的定义,则存在如下关系:<math>\epsilon(\stackrel{\leftarrow}{s})\equiv\{\stackrel{\leftarrow}{s}^{\prime}|\mathrm{P}(\stackrel{\rightarrow}{S}=\stackrel{\rightarrow}{s}\mid\stackrel{\leftarrow}{S}=\stackrel{\leftarrow}{s})=\mathrm{P}(\stackrel{\rightarrow}{S}=\stackrel{\rightarrow}{s}\mid\stackrel{\leftarrow}{S}=\stackrel{\leftarrow}{s}^{\prime}),\mathrm{for~all~}\overrightarrow{s}\in\overrightarrow{S},\stackrel{\leftarrow}{s}^{\prime}\in\stackrel{\leftarrow}{S}\} </math>,其中<math>\mathcal{S} </math>为因果态的集合,<math>\stackrel{\leftarrow}{s} </math>为历史序列的随机变量。
 
因果态的划分映射可以记作<math>\epsilon</math>,公式为<math> \epsilon{:}\overleftarrow{S}\mapsto2^{\overset{\leftarrow}{S}}</math>,其中<math> 2^{\overset{\leftarrow}{S}}</math>是<math> \overleftarrow{S}</math>的幂集。根据因果态的定义,则存在如下关系:<math>\epsilon(\stackrel{\leftarrow}{s})\equiv\{\stackrel{\leftarrow}{s}^{\prime}|\mathrm{P}(\stackrel{\rightarrow}{S}=\stackrel{\rightarrow}{s}\mid\stackrel{\leftarrow}{S}=\stackrel{\leftarrow}{s})=\mathrm{P}(\stackrel{\rightarrow}{S}=\stackrel{\rightarrow}{s}\mid\stackrel{\leftarrow}{S}=\stackrel{\leftarrow}{s}^{\prime}),\mathrm{for~all~}\overrightarrow{s}\in\overrightarrow{S},\stackrel{\leftarrow}{s}^{\prime}\in\stackrel{\leftarrow}{S}\} </math>,其中<math>\mathcal{S} </math>为因果态的集合,<math>\stackrel{\leftarrow}{s} </math>为历史序列的随机变量。
 
[[文件:因果态的定义.jpg|居中|无框|400x400px|替代=]]
 
[[文件:因果态的定义.jpg|居中|无框|400x400px|替代=]]
 
如上图所示,左侧的数字代表<math>t</math>时刻的状态序列,右侧的箭头形状代表对未来状态预测的分布,可以观察到<math>t_9</math>和<math>t_{13}</math>时刻的箭头形状完全相同,说明它们对未来状态预测的分布相同,则处于相同的因果态;同样的道理,在<math>t_{11}</math>时刻,它的箭头形状与<math>t_9</math>和<math>t_{13}</math>时刻不同,则处于不同的因果态。
 
如上图所示,左侧的数字代表<math>t</math>时刻的状态序列,右侧的箭头形状代表对未来状态预测的分布,可以观察到<math>t_9</math>和<math>t_{13}</math>时刻的箭头形状完全相同,说明它们对未来状态预测的分布相同,则处于相同的因果态;同样的道理,在<math>t_{11}</math>时刻,它的箭头形状与<math>t_9</math>和<math>t_{13}</math>时刻不同,则处于不同的因果态。
 +
[[文件:木星大红斑.png|右|无框|273x273像素]]
 +
预测等价性(predictive equivalence)是计算内在涌现(简称内在计算,intrinsic computation)的核心思想,即系统的历史能够用来预测其未来行为的程度。通过构建预测模型,内在计算能够识别系统中的结构,并量化这些结构的复杂性和稳定性。它可以让我们能够将[[自组织]]视为系统中规律性和规则性的涌现,而这些规律性和规则性是系统在特定的初始条件和外部驱动下自发形成的。内在计算的一个重要应用是在理解从完全规则到完全无序之间的组织结构。比如,木星的大红斑是一个经典的自组织现象,其规模和稳定性无法通过简单的流体力学方程直接解释。然而,内在计算能够通过分析该现象的历史数据,构建出一个能够准确预测其未来行为的模型,从而揭示出其背后的自组织机制。
    
===斑图重构机器===
 
===斑图重构机器===
297

个编辑

导航菜单