更改

跳到导航 跳到搜索
无编辑摘要
第3行: 第3行:  
Lumpability是一种描述马尔科夫链的状态是否可聚类的性质,笔者暂时还没找到一个正式的中文翻译。
 
Lumpability是一种描述马尔科夫链的状态是否可聚类的性质,笔者暂时还没找到一个正式的中文翻译。
   −
这个概念最早出现在Kemeny, Snell在1969年的Finite Markov Chains<ref name=":3">Kemeny, John G., and J. Laurie Snell. ''Finite markov chains''. Vol. 26. Princeton, NJ: van Nostrand, 1969. https://www.math.pku.edu.cn/teachers/yaoy/Fall2011/Kemeny-Snell_Chapter6.3-4.pdf</ref>中。
+
这个概念最早出现在Kemeny, Snell在1969年的Finite Markov Chains<ref name=":1">Kemeny, John G., and J. Laurie Snell. ''Finite markov chains''. Vol. 26. Princeton, NJ: van Nostrand, 1969. https://www.math.pku.edu.cn/teachers/yaoy/Fall2011/Kemeny-Snell_Chapter6.3-4.pdf</ref>中。
      第81行: 第81行:  
==lumpable partition的充分必要条件==
 
==lumpable partition的充分必要条件==
   −
通过上面的例子,我们可以对lumpable partition有一些直观的理解。我们可以留意到,在lumpable partition中,有两个分组,所以有四个框。每一个框里,每一列相加的和都是一样的,比如左上角的框中,<math>0.3 + 0.3 = 0.2 + 0.4</math>。这就是lumpable partition更通俗的解释,在某些文献中,并不会使用上面提及的定义,而是直接使用这个通俗版的解释。<ref name=":3" />中作者指出,这两者之间是存在充分必要条件关系的。
+
通过上面的例子,我们可以对lumpable partition有一些直观的理解。我们可以留意到,在lumpable partition中,有两个分组,所以有四个框。每一个框里,每一列相加的和都是一样的,比如左上角的框中,<math>0.3 + 0.3 = 0.2 + 0.4</math>。这就是lumpable partition更通俗的解释,在某些文献中,并不会使用上面提及的定义,而是直接使用这个通俗版的解释。<ref name=":1" />中作者指出,这两者之间是存在充分必要条件关系的。
    
设<math>p_{s_k \rightarrow s_m} = p(s^{(t)} = s_m | s^{(t-1)} = s_k)</math>,<math>p_{s_k \rightarrow A_i} = p(s^{(t)} \in A_i | s^{(t-1)} = s_k) = \sum_{s_m \in A_i} p_{s_k \rightarrow s_m}</math>,<math>p_{A_i \rightarrow A_j} = p(A^{(t)} = A_j | A^{(t-1)} = A_i)</math>
 
设<math>p_{s_k \rightarrow s_m} = p(s^{(t)} = s_m | s^{(t-1)} = s_k)</math>,<math>p_{s_k \rightarrow A_i} = p(s^{(t)} \in A_i | s^{(t-1)} = s_k) = \sum_{s_m \in A_i} p_{s_k \rightarrow s_m}</math>,<math>p_{A_i \rightarrow A_j} = p(A^{(t)} = A_j | A^{(t-1)} = A_i)</math>
第208行: 第208行:  
第2组<math>A_2</math>的状态<math>s_4</math>到第1组<math>A_1</math>,<math>p_{s_4 \rightarrow A_1} = \sum_{s_m \in A_1} p_{s_4 \rightarrow s_m} = p_{s_4 \rightarrow s_1} + p_{s_4 \rightarrow s_2} = 0.1 \times 2 = 0.2 </math>
 
第2组<math>A_2</math>的状态<math>s_4</math>到第1组<math>A_1</math>,<math>p_{s_4 \rightarrow A_1} = \sum_{s_m \in A_1} p_{s_4 \rightarrow s_m} = p_{s_4 \rightarrow s_1} + p_{s_4 \rightarrow s_2} = 0.1 \times 2 = 0.2 </math>
   −
这里我们就能看到,<math>p_{s_3 \rightarrow A_1} \neq p_{s_4 \rightarrow A_1}</math>,当同一组的两个状态<math>s_3</math>和<math>s_4</math>对其他组的转移概率不一样的话,如果我们强行按照这样来分组(也没办法强行,因为我们不知道<math>p_{A_2 \rightarrow A_1} = p_{s_3 \rightarrow A_1}</math>还是<math>p_{A_2 \rightarrow A_1} = p_{s_4 \rightarrow A_1}</math>),假设<math>p_{A_2 \rightarrow A_1} = 0.6</math>,我们会发现这样的粗粒化结果违背了Lumpability一开始的定义<ref name=":3" />(公式(3)),即粗粒化后的'''转移概率对所有的初始微观状态<math>\pi</math>都适用'''。因为当<math>\pi = s_4</math>的时候,<math>p_{A_2 \rightarrow A_1} = 0.6</math>这个转移概率就是错的,即使<math>\pi \neq s_4</math>,任何初始微观状态<math>\pi</math>都会在某时刻<math>n</math>达到<math>s_4</math>并导致转移概率出错。
+
这里我们就能看到,<math>p_{s_3 \rightarrow A_1} \neq p_{s_4 \rightarrow A_1}</math>,当同一组的两个状态<math>s_3</math>和<math>s_4</math>对其他组的转移概率不一样的话,如果我们强行按照这样来分组(也没办法强行,因为我们不知道<math>p_{A_2 \rightarrow A_1} = p_{s_3 \rightarrow A_1}</math>还是<math>p_{A_2 \rightarrow A_1} = p_{s_4 \rightarrow A_1}</math>),假设<math>p_{A_2 \rightarrow A_1} = 0.6</math>,我们会发现这样的粗粒化结果违背了Lumpability一开始的定义<ref name=":1" />(公式(3)),即粗粒化后的'''转移概率对所有的初始微观状态<math>\pi</math>都适用'''。因为当<math>\pi = s_4</math>的时候,<math>p_{A_2 \rightarrow A_1} = 0.6</math>这个转移概率就是错的,即使<math>\pi \neq s_4</math>,任何初始微观状态<math>\pi</math>都会在某时刻<math>n</math>达到<math>s_4</math>并导致转移概率出错。
      第273行: 第273行:  
===Weak Lumpability===
 
===Weak Lumpability===
   −
Weak lumpability 是指lumped process不对所有的初始状态满足,而仅对某些初始状态满足。
+
Weak lumpability<ref name=":3" />是指lumped process不对所有的初始状态满足,而仅对某些初始状态满足。
    
一个简单的例子是,某个状态<math>s_i</math>到<math>s_j</math>不联通的,而lumped process适用于<math>s_i</math>但不适用于<math>s_j</math>。所以,当初始状态等于<math>s_i</math>时,因为永远不会到达<math>s_j</math>,所以lumped process会一直适用。
 
一个简单的例子是,某个状态<math>s_i</math>到<math>s_j</math>不联通的,而lumped process适用于<math>s_i</math>但不适用于<math>s_j</math>。所以,当初始状态等于<math>s_i</math>时,因为永远不会到达<math>s_j</math>,所以lumped process会一直适用。
第530行: 第530行:  
我们在实际问题中很多时候要面对的是像<math>P</math>这样的矩阵,我们既无法确定它是否lumpable,也无法决定它的partition,我们甚至不知道它的马尔科夫秩。
 
我们在实际问题中很多时候要面对的是像<math>P</math>这样的矩阵,我们既无法确定它是否lumpable,也无法决定它的partition,我们甚至不知道它的马尔科夫秩。
   −
在这种情况下,Anru Zhang<ref name=":4">Zhang, Anru, and Mengdi Wang. "Spectral state compression of markov processes." ''IEEE transactions on information theory'' 66.5 (2019): 3202-3231.</ref><ref name=":3" />的文章中提供了一种寻找最优partition的方法。通过此方法我们能找到最优的partition,代入这个partition我们就能通过上面的充分必要条件来决定一个马尔科夫矩阵是否lumpable。具体步骤如下:
+
在这种情况下,Anru Zhang<ref name=":4">Zhang, Anru, and Mengdi Wang. "Spectral state compression of markov processes." ''IEEE transactions on information theory'' 66.5 (2019): 3202-3231.</ref><ref name=":4" />的文章中提供了一种寻找最优partition的方法。通过此方法我们能找到最优的partition,代入这个partition我们就能通过上面的充分必要条件来决定一个马尔科夫矩阵是否lumpable。具体步骤如下:
    
#先获取一个n*n维的马尔科夫矩阵P,或者是马尔科夫链的频率采样;
 
#先获取一个n*n维的马尔科夫矩阵P,或者是马尔科夫链的频率采样;
159

个编辑

导航菜单