第97行: |
第97行: |
| | | |
| where <math>I_v</math> and <math>I_e</math> are the [[index set]]s of the vertices and edges respectively. | | where <math>I_v</math> and <math>I_e</math> are the [[index set]]s of the vertices and edges respectively. |
| + | |
| + | 让 𝐻=(𝑋,𝐸) 是一个超图,包含顶点集: |
| + | 𝑋={𝑥𝑖|𝑖∈𝐼𝑣}, |
| + | 和边集 |
| + | 𝐸={𝑒𝑖|𝑖∈𝐼𝑒∧𝑒𝑖⊆𝑋∧𝑒𝑖≠∅𝐸} |
| + | 其中 𝐼𝑣 和 𝐼𝑒 分别是顶点和边集的索引集。 |
| | | |
| A ''subhypergraph'' is a hypergraph with some vertices removed. Formally, the subhypergraph <math>H_A</math> induced by <math>A \subseteq X </math> is defined as | | A ''subhypergraph'' is a hypergraph with some vertices removed. Formally, the subhypergraph <math>H_A</math> induced by <math>A \subseteq X </math> is defined as |
第102行: |
第108行: |
| :<math>H_A=\left(A, \lbrace e \cap A | e \in E \land | | :<math>H_A=\left(A, \lbrace e \cap A | e \in E \land |
| e \cap A \neq \emptyset \rbrace \right).</math> | | e \cap A \neq \emptyset \rbrace \right).</math> |
| + | |
| + | 子超图是去掉某些顶点的超图。在形式上,若 𝐴⊆𝑋 是顶点子集,则子超图 𝐻𝐴 被定义为: |
| + | 𝐻𝐴=(𝐴,{𝑒𝐴∩∩|𝑒𝐴∈𝐸∧𝑒∩𝐴≠∅) |
| | | |
| An ''extension'' of a ''subhypergraph'' is a hypergraph where each | | An ''extension'' of a ''subhypergraph'' is a hypergraph where each |
| hyperedge of <math>H</math> which is partially contained in the subhypergraph <math>H_A</math> and is fully contained in the extension <math>Ex(H_A)</math>. | | hyperedge of <math>H</math> which is partially contained in the subhypergraph <math>H_A</math> and is fully contained in the extension <math>Ex(H_A)</math>. |
| Formally | | Formally |
| + | 一个子超图的扩展是一个超图,其中每个属于 H 的超边都部分包含在子超图的 𝐻𝐴,并且完全包含在扩展的𝐸𝑥(𝐻𝐴) 中。即在形式上: |
| :<math>Ex(H_A) = (A \cup A', E' )</math> with <math>A' = \bigcup_{e \in E} e \setminus A</math> and <math>E' = \lbrace e \in E | e \subseteq (A \cup A') \rbrace</math>. | | :<math>Ex(H_A) = (A \cup A', E' )</math> with <math>A' = \bigcup_{e \in E} e \setminus A</math> and <math>E' = \lbrace e \in E | e \subseteq (A \cup A') \rbrace</math>. |
| | | |
| The ''partial hypergraph'' is a hypergraph with some edges removed. Given a subset <math>J \subset I_e</math> of the edge index set, the partial hypergraph generated by <math>J</math> is the hypergraph | | The ''partial hypergraph'' is a hypergraph with some edges removed. Given a subset <math>J \subset I_e</math> of the edge index set, the partial hypergraph generated by <math>J</math> is the hypergraph |
− | | + | 部分超图是去掉一些边的超图。给定一个边索引集的子集 𝐽⊂𝐼𝑒 ,由 𝐽 生成的部分超图就是 |
| :<math>\left(X, \lbrace e_i | i\in J \rbrace \right).</math> | | :<math>\left(X, \lbrace e_i | i\in J \rbrace \right).</math> |
| | | |
| Given a subset <math>A\subseteq X</math>, the ''section hypergraph'' is the partial hypergraph | | Given a subset <math>A\subseteq X</math>, the ''section hypergraph'' is the partial hypergraph |
− | | + | 而给定一个子集 𝐴⊆𝑋,则分段超图是部分超图 |
| :<math>H \times A = \left(A, \lbrace e_i | | | :<math>H \times A = \left(A, \lbrace e_i | |
| i\in I_e \land e_i \subseteq A \rbrace \right).</math> | | i\in I_e \land e_i \subseteq A \rbrace \right).</math> |
| | | |
| The '''dual''' <math>H^*</math> of <math>H</math> is a hypergraph whose vertices and edges are interchanged, so that the vertices are given by <math>\lbrace e_i \rbrace</math> and whose edges are given by <math>\lbrace X_m \rbrace</math> where | | The '''dual''' <math>H^*</math> of <math>H</math> is a hypergraph whose vertices and edges are interchanged, so that the vertices are given by <math>\lbrace e_i \rbrace</math> and whose edges are given by <math>\lbrace X_m \rbrace</math> where |
− | | + | 𝐻 的重记号 𝐻∗ 则是一个顶点和边互换的超图,因此顶点由 {𝑒𝑖 } 给出,边由 {𝑋𝑚} 给出,其中 |
| :<math>X_m = \lbrace e_i | x_m \in e_i \rbrace. </math> | | :<math>X_m = \lbrace e_i | x_m \in e_i \rbrace. </math> |
| | | |
| When a notion of equality is properly defined, as done below, the operation of taking the dual of a hypergraph is an [[involution (mathematics)|involution]], i.e., | | When a notion of equality is properly defined, as done below, the operation of taking the dual of a hypergraph is an [[involution (mathematics)|involution]], i.e., |
− | | + | 当等式的记号被正确定义时,如下,对一个超图采取两次运算是对偶的: |
| :<math>\left(H^*\right)^* = H.</math> | | :<math>\left(H^*\right)^* = H.</math> |
| | | |
第482行: |
第492行: |
| | last5 = Verbeek | first5 = Kevin | | | last5 = Verbeek | first5 = Kevin |
| | contribution = On planar supports for hypergraphs | | | contribution = On planar supports for hypergraphs |
− | | doi = 10.1007/978-3-642-11805-0_33 | + | | doi = 10.1007/_33 |
| | pages = 345–356 | | | pages = 345–356 |
| | publisher = Springer-Verlag | | | publisher = Springer-Verlag |
第489行: |
第499行: |
| | volume = 5849 | | | volume = 5849 |
| | year = 2010| title-link = International Symposium on Graph Drawing | | | year = 2010| title-link = International Symposium on Graph Drawing |
− | | isbn = 978-3-642-11804-3 | + | | isbn = |
| | doi-access = free | | | doi-access = free |
| }}.</ref> | | }}.</ref> |