更改

跳到导航 跳到搜索
添加1,027字节 、 2020年4月22日 (三) 17:44
无编辑摘要
第97行: 第97行:     
where <math>I_v</math> and <math>I_e</math> are the [[index set]]s of the vertices and edges respectively.
 
where <math>I_v</math> and <math>I_e</math> are the [[index set]]s of the vertices and edges respectively.
 +
 +
让 𝐻=(𝑋,𝐸) 是一个超图,包含顶点集:
 +
𝑋={𝑥𝑖|𝑖∈𝐼𝑣},
 +
和边集
 +
𝐸={𝑒𝑖|𝑖∈𝐼𝑒∧𝑒𝑖⊆𝑋∧𝑒𝑖≠∅𝐸}
 +
其中 𝐼𝑣 和 𝐼𝑒 分别是顶点和边集的索引集。
    
A ''subhypergraph'' is a hypergraph with some vertices removed.  Formally, the subhypergraph <math>H_A</math> induced by <math>A \subseteq X </math> is defined as
 
A ''subhypergraph'' is a hypergraph with some vertices removed.  Formally, the subhypergraph <math>H_A</math> induced by <math>A \subseteq X </math> is defined as
第102行: 第108行:  
:<math>H_A=\left(A, \lbrace e \cap A | e \in E \land
 
:<math>H_A=\left(A, \lbrace e \cap A | e \in E \land
 
e \cap A \neq \emptyset \rbrace \right).</math>
 
e \cap A \neq \emptyset \rbrace \right).</math>
 +
 +
子超图是去掉某些顶点的超图。在形式上,若 𝐴⊆𝑋 是顶点子集,则子超图 𝐻𝐴 被定义为:
 +
𝐻𝐴=(𝐴,{𝑒𝐴∩∩|𝑒𝐴∈𝐸∧𝑒∩𝐴≠∅)
    
An ''extension'' of a ''subhypergraph'' is a hypergraph where each
 
An ''extension'' of a ''subhypergraph'' is a hypergraph where each
 
hyperedge of <math>H</math> which is partially contained in the subhypergraph <math>H_A</math> and is fully contained in the extension <math>Ex(H_A)</math>.
 
hyperedge of <math>H</math> which is partially contained in the subhypergraph <math>H_A</math> and is fully contained in the extension <math>Ex(H_A)</math>.
 
Formally
 
Formally
 +
一个子超图的扩展是一个超图,其中每个属于 H 的超边都部分包含在子超图的 𝐻𝐴,并且完全包含在扩展的𝐸𝑥(𝐻𝐴) 中。即在形式上:
 
:<math>Ex(H_A) = (A \cup A', E' )</math> with <math>A' = \bigcup_{e \in E} e \setminus A</math> and <math>E' = \lbrace e \in E | e \subseteq (A \cup A') \rbrace</math>.
 
:<math>Ex(H_A) = (A \cup A', E' )</math> with <math>A' = \bigcup_{e \in E} e \setminus A</math> and <math>E' = \lbrace e \in E | e \subseteq (A \cup A') \rbrace</math>.
    
The ''partial hypergraph'' is a hypergraph with some edges removed. Given a subset <math>J \subset I_e</math> of the edge index set, the partial hypergraph generated by <math>J</math> is the hypergraph
 
The ''partial hypergraph'' is a hypergraph with some edges removed. Given a subset <math>J \subset I_e</math> of the edge index set, the partial hypergraph generated by <math>J</math> is the hypergraph
 
+
部分超图是去掉一些边的超图。给定一个边索引集的子集 𝐽⊂𝐼𝑒 ,由 𝐽 生成的部分超图就是
 
:<math>\left(X, \lbrace e_i | i\in J \rbrace \right).</math>
 
:<math>\left(X, \lbrace e_i | i\in J \rbrace \right).</math>
    
Given a subset <math>A\subseteq X</math>, the ''section hypergraph'' is the partial hypergraph
 
Given a subset <math>A\subseteq X</math>, the ''section hypergraph'' is the partial hypergraph
 
+
而给定一个子集 𝐴⊆𝑋,则分段超图是部分超图
 
:<math>H \times A = \left(A, \lbrace e_i |  
 
:<math>H \times A = \left(A, \lbrace e_i |  
 
i\in I_e \land e_i \subseteq A  \rbrace \right).</math>
 
i\in I_e \land e_i \subseteq A  \rbrace \right).</math>
    
The '''dual''' <math>H^*</math> of <math>H</math> is a hypergraph whose vertices and edges are interchanged, so that the vertices are given by <math>\lbrace e_i \rbrace</math> and whose edges are given by <math>\lbrace X_m \rbrace</math> where
 
The '''dual''' <math>H^*</math> of <math>H</math> is a hypergraph whose vertices and edges are interchanged, so that the vertices are given by <math>\lbrace e_i \rbrace</math> and whose edges are given by <math>\lbrace X_m \rbrace</math> where
 
+
𝐻 的重记号 𝐻∗ 则是一个顶点和边互换的超图,因此顶点由 {𝑒𝑖 } 给出,边由 {𝑋𝑚} 给出,其中
 
:<math>X_m = \lbrace e_i | x_m \in e_i \rbrace. </math>
 
:<math>X_m = \lbrace e_i | x_m \in e_i \rbrace. </math>
    
When a notion of equality is properly defined, as done below, the operation of taking the dual of a hypergraph is an [[involution (mathematics)|involution]], i.e.,
 
When a notion of equality is properly defined, as done below, the operation of taking the dual of a hypergraph is an [[involution (mathematics)|involution]], i.e.,
 
+
当等式的记号被正确定义时,如下,对一个超图采取两次运算是对偶的:
 
:<math>\left(H^*\right)^* = H.</math>
 
:<math>\left(H^*\right)^* = H.</math>
   第482行: 第492行:  
  | last5 = Verbeek | first5 = Kevin
 
  | last5 = Verbeek | first5 = Kevin
 
  | contribution = On planar supports for hypergraphs
 
  | contribution = On planar supports for hypergraphs
  | doi = 10.1007/978-3-642-11805-0_33
+
  | doi = 10.1007/_33
 
  | pages = 345–356
 
  | pages = 345–356
 
  | publisher = Springer-Verlag
 
  | publisher = Springer-Verlag
第489行: 第499行:  
  | volume = 5849
 
  | volume = 5849
 
  | year = 2010| title-link = International Symposium on Graph Drawing
 
  | year = 2010| title-link = International Symposium on Graph Drawing
  | isbn = 978-3-642-11804-3
+
  | isbn =  
 
  | doi-access = free
 
  | doi-access = free
 
  }}.</ref>
 
  }}.</ref>
27

个编辑

导航菜单