更改
跳到导航
跳到搜索
第145行:
第145行:
− 【监督学习】使用一组例子对<math> (x, y), x \in X, y \in Y</math> ,目标是在允许的函数类中找到一个函数 <math> f : X \rightarrow Y </math> 匹配例子。 换言之,我们希望推断数据隐含的映射;损失函数与我们的映射和数据间的不匹配相关,它隐含了关于问题域的先验知识。+
− 通常使用的损失函数是【均方误差】,它对所有的例子对在网络输出 <math> f(x)</math>和目标值<math> y</math>之间最小化平均平方误差。最小化损失对一类叫做【多层感知机】(MLP)的一类神经网络使用了【梯度下降】,产生了训练神经网络的【反向传播算法】。+
− 监督学习范式中的任务是【模式识别】(也被称为分类)和【回归】(也被称为函数逼近)。监督学习范式也可适用于序列数据(例如手写,语音和手势识别)。这可以被认为是和“老师”学习,以一个根据迄今为止得到解的质量提供连续反馈的函数形式。+
→监督学习(Supervised learning)
==== 监督学习(Supervised learning) ====
==== 监督学习(Supervised learning) ====
[https://en.wikipedia.org/wiki/Supervised_learning 监督学习]使用一组例子对<math>{(x, y)}, {x \in X}, {y \in Y}</math>,目标是在允许的函数类中找到一个函数 <math> f : X \rightarrow Y </math> 匹配例子。 换言之,我们希望推断数据隐含的映射;损失函数与我们的映射和数据间的不匹配相关,它隐含了关于问题域的先验知识。
通常使用的损失函数是[https://en.wikipedia.org/wiki/Mean-squared_error 均方误差],它对所有的例子对在网络输出 <math> f(x)</math>和目标值<math> y</math>之间最小化平均平方误差。最小化损失对一类叫做[https://en.wikipedia.org/wiki/Multilayer_perceptron 多层感知机](MLP)的一类神经网络使用了[https://en.wikipedia.org/wiki/Gradient_descent 梯度下降],产生了训练神经网络的[https://en.wikipedia.org/wiki/Backpropagation 反向传播算法]。
监督学习范式中的任务是[https://en.wikipedia.org/wiki/Pattern_recognition 模式识别](也被称为分类)和[https://en.wikipedia.org/wiki/Regression_analysis 回归](也被称为函数逼近)。监督学习范式也可适用于序列数据(例如手写,语音和手势识别)。这可以被认为是和“老师”学习,以一个根据迄今为止得到解的质量提供连续反馈的函数形式。
====无监督学习(Unsupervised learning)====
====无监督学习(Unsupervised learning)====