更改
跳到导航
跳到搜索
第8行:
第8行:
− +
无编辑摘要
[[File:Colored_neural_network.svg.png|thumb|300px|人工神经网络是一组互相连接的节点,与[https://en.wikipedia.org/wiki/Brain 大脑]中的大量[https://en.wikipedia.org/wiki/Neuron 神经元]类似。这里,每个圆形节点代表一个[https://en.wikipedia.org/wiki/Artificial_neuron 人工神经元] ,一个箭头表示从一个人工神经元的输出连接到另一个的输入。]]
[[File:Colored_neural_network.svg.png|thumb|300px|人工神经网络是一组互相连接的节点,与[https://en.wikipedia.org/wiki/Brain 大脑]中的大量[https://en.wikipedia.org/wiki/Neuron 神经元]类似。这里,每个圆形节点代表一个[https://en.wikipedia.org/wiki/Artificial_neuron 人工神经元] ,一个箭头表示从一个人工神经元的输出连接到另一个的输入。]]
'''人工神经网络''' ('''ANNs''') 或 '''[https://en.wikipedia.org/wiki/Synapse 联结主义] 系统''' 或许是受到构成动物[https://en.wikipedia.org/wiki/Brain 大脑]的[https://en.wikipedia.org/wiki/Neural_circuit 生物神经网络]启发的计算系统<ref>{{Cite web|url=https://www.frontiersin.org/research-topics/4817/artificial-neural-networks-as-models-of-neural-information-processing|title=Artificial Neural Networks as Models of Neural Information Processing {{!}} Frontiers Research Topic|language=en|access-date=2018-02-20}}</ref>。这种系统通过分析样本“学习”执行任务,通常不需要用任何具体的任务规则编程。例如,在[https://en.wikipedia.org/wiki/Computer_vision#Recognition 图像识别],他们可能通过分析被手动[https://en.wikipedia.org/wiki/Labeled_data 标记]成“有猫”和“无猫”的示例图像来学习识别包含猫的图像并利用结果识别其他图像中的猫。他们不需要任何关于猫的先验知识以完成这个任务,例如它们有毛,尾巴,胡须和猫科动物的脸。它们自动地从它们处理的学习材料中产生识别特征。
'''人工神经网络''' ('''ANNs''') 或 '''[https://en.wikipedia.org/wiki/Synapse 联结主义] 系统''' 或许是受到构成动物[https://en.wikipedia.org/wiki/Brain 大脑]的[https://en.wikipedia.org/wiki/Neural_circuit 生物神经网络]启发的计算系统<ref>{{Cite journal|url=https://www.frontiersin.org/research-topics/4817/artificial-neural-networks-as-models-of-neural-information-processing|title=Artificial Neural Networks as Models of Neural Information Processing, Frontiers Research Topic|language=en|access-date=2018-02-20}}</ref>。这种系统通过分析样本“学习”执行任务,通常不需要用任何具体的任务规则编程。例如,在[https://en.wikipedia.org/wiki/Computer_vision#Recognition 图像识别],他们可能通过分析被手动[https://en.wikipedia.org/wiki/Labeled_data 标记]成“有猫”和“无猫”的示例图像来学习识别包含猫的图像并利用结果识别其他图像中的猫。他们不需要任何关于猫的先验知识以完成这个任务,例如它们有毛,尾巴,胡须和猫科动物的脸。它们自动地从它们处理的学习材料中产生识别特征。
人工神经网络是基于一些称为[https://en.wikipedia.org/wiki/Artificial_neuron 人工神经元]的相连单元或节点,它们宽泛地模拟了一个生物的[https://en.wikipedia.org/wiki/Brain 大脑]中的[https://en.wikipedia.org/wiki/Neuron 神经元]。每个连接好像一个生物的[https://en.wikipedia.org/wiki/Brain 大脑]中的[https://en.wikipedia.org/wiki/Synapse 突触],它们可以将信号从一个人工神经元传递到另一个。一个接收信号的人工神经元可以处理它然后发信号给它连接到的额外的人工神经元。
人工神经网络是基于一些称为[https://en.wikipedia.org/wiki/Artificial_neuron 人工神经元]的相连单元或节点,它们宽泛地模拟了一个生物的[https://en.wikipedia.org/wiki/Brain 大脑]中的[https://en.wikipedia.org/wiki/Neuron 神经元]。每个连接好像一个生物的[https://en.wikipedia.org/wiki/Brain 大脑]中的[https://en.wikipedia.org/wiki/Synapse 突触],它们可以将信号从一个人工神经元传递到另一个。一个接收信号的人工神经元可以处理它然后发信号给它连接到的额外的人工神经元。