更改

跳到导航 跳到搜索
删除43字节 、 2020年3月15日 (日) 22:48
第160行: 第160行:  
通常来说,有许多不同的特征值<math>\lambda</math>能使得一个特征方程有非零解存在。然而,考虑到特征向量中的所有项均为非负值,根据[[佩伦-弗罗贝尼乌斯定理]],只有特征值最大时才能测量出想要的中心性。然后通过计算网络中的节点<math>v</math> 其特征向量的相关分量<math>v^\text{th}</math>便能得出其对应的中心性的分数。特征向量的定义只有一个公因子,因此各节点中心性的比例可以很好确定。为了确定一个绝对分数,必须将其中一个特征值标准化,例如所有节点评分之和为1或者节点数&nbsp;''n''。[[冪次迭代|幂次迭代]]是许多特征值算法中的一种,该算法可以用来寻找这种主导特征向量。此外,以上方法可以推广,使得矩阵''A''中每个元素可以是表示连接强度的实数,例如[[随机矩阵]]。
 
通常来说,有许多不同的特征值<math>\lambda</math>能使得一个特征方程有非零解存在。然而,考虑到特征向量中的所有项均为非负值,根据[[佩伦-弗罗贝尼乌斯定理]],只有特征值最大时才能测量出想要的中心性。然后通过计算网络中的节点<math>v</math> 其特征向量的相关分量<math>v^\text{th}</math>便能得出其对应的中心性的分数。特征向量的定义只有一个公因子,因此各节点中心性的比例可以很好确定。为了确定一个绝对分数,必须将其中一个特征值标准化,例如所有节点评分之和为1或者节点数&nbsp;''n''。[[冪次迭代|幂次迭代]]是许多特征值算法中的一种,该算法可以用来寻找这种主导特征向量。此外,以上方法可以推广,使得矩阵''A''中每个元素可以是表示连接强度的实数,例如[[随机矩阵]]。
   −
==用领接矩阵找特征向量中心性==
+
 
    
===Katz中心===
 
===Katz中心===

导航菜单