更改

跳到导航 跳到搜索
删除6字节 、 2020年6月24日 (三) 23:29
无编辑摘要
第43行: 第43行:     
===变量选择===
 
===变量选择===
在许多情况下,例如激光物理学,非线性量子光学,等离子物理学,变量是电场和磁场强度以及原子量,例如偶极矩和原子能级的占据数。在许多情况下,使用介观方法,其中将许多原子或分子集中到一个体积元素中,该体积元素足够大,可以使用平均方法,但又足够小,可以适当地覆盖局部不同部分的时空变化。这样的局部平均值例如人口密度或物质密度,局部通量等可以在大多数领域中用作变量。还可以将诸如受试者经历的疼痛量之类的估计量用作变量。
+
在多数情况下,例如激光物理学,非线性量子光学,等离子物理学,变量是电场和磁场强度以及原子量,例如偶极矩和原子能级的占据数。通常情况下,当许多原子或分子集中到一个体积元素中,且该体积元素足够大到可以使用平均方法,同时又足够小到可以适当覆盖住本地各部分的时空变化时,可以使用介观方法。这样的局部平均值(例如人口密度或物质密度,局部通量等)可以在大多数领域中用作变量。还可以将诸如受试者经历的疼痛量之类的估计量用作变量。
       
===运动方程===
 
===运动方程===
动力学由所考虑的变量的演化方程式描述,即相关变量的时间变化由系统的当前状态确定。通常,这些方程是包含Îto或Stratonovich类型波动的随机,非线性,偏微分或积分微分方程。通常,它们要么源于消除系统与外部油藏的耦合,要么源于消除内部变量。由此也可以考虑用于系统与外部的耦合的术语,例如通入系统的通量或能量耗散。
+
系统的动力学由所考虑参量的演化方程来描述,例如相关参量的时间变化由系统的当前状态决定。通常这些方程是随机的、非线性的,包含Îto或Stratonovich类型波动的偏微分或积分微分方程。它们通常源于系统与外部储层的耦合消除或内部变量消除。因此,例如通入系统的通量或能量耗散等系统与外界的耦合项也可纳入考虑。
     
330

个编辑

导航菜单