更改

跳到导航 跳到搜索
删除262字节 、 2020年6月24日 (三) 23:55
无编辑摘要
第51行: 第51行:     
===解法===
 
===解法===
当然,还必须考虑初始条件和边界条件的演化方程的一般解是不可能的。但是,以下技术在协同作用的整个范围内都非常成功:对于给定的控制参数值或一组控制参数,我们从已知吸引子或可能接近吸引子的假设开始。这可能是定点吸引子,极限环吸引子,圆环或混乱吸引子。
+
初始条件和边界条件演化方程的一般解是不可能的,但以下技术在协同学整个领域都非常有效:对于给定的参量或一组参量,我们假设吸引子的解是已知的,它可以是不动点吸引子,极限环吸引子,换面吸引子或混沌吸引子。
   −
然后,当一个或多个控制参数发生变化时,便会检查解决方案的稳定性,这在Synergetics中使用的常规方法是通过线性稳定性理论来完成的。根据谱理论,线性稳定性问题的解本质上是指数性质的。呈指数增长或中性的解表示“不稳定模式”。在完全非线性的处理中,它们的幅度或相位成为阶跃参数,这也考虑了波动。然后将运动方程式转换为这些新变量,定义阶数参数的振幅和相位以及仍然稳定的模式。然后,考虑到波动,消除了阻尼(稳定)模式(从动原理)。所得的阶次参数方程通常是低维的,属于Langevin方程类型,但是具有非线性。它们可以被转换成福克-普朗克方程。
      +
解的稳定性以线性稳定理论来检验。根据谱理论,线性稳定性问题的解本质上是指数性的。呈指数增加或中性的解描述了“不稳定模式”。它们的振幅、相位(按非线性处理时也考虑涨落)成为序参量。运动方程变为由这些新变量、振幅或相位决定的序参量,且仍是稳定模式。之后计入涨落,阻尼(稳定)模式(奴役原理)被消除。所得到的序参量方程一般是低维的,系朗之万方程类型但是非线性的,可以转换成福克-普朗克方程。
     
330

个编辑

导航菜单