第42行: |
第42行: |
| Dynamical systems theory and chaos theory deal with the long-term qualitative behavior of dynamical systems. Here, the focus is not on finding precise solutions to the equations defining the dynamical system (which is often hopeless), but rather to answer questions like "Will the system settle down to a steady state in the long term, and if so, what are the possible steady states?", or "Does the long-term behavior of the system depend on its initial condition?" | | Dynamical systems theory and chaos theory deal with the long-term qualitative behavior of dynamical systems. Here, the focus is not on finding precise solutions to the equations defining the dynamical system (which is often hopeless), but rather to answer questions like "Will the system settle down to a steady state in the long term, and if so, what are the possible steady states?", or "Does the long-term behavior of the system depend on its initial condition?" |
| | | |
− | 动力系统理论和'''混沌理论(Chaos Theory)'''是用来处理动力系统的长期定性行为的理论。寻找动力系统方程的精确解通常是很难达到的。这两个理论的重点不在于找到精确解,而是回答如下的问题,如“系统长期来看是否会稳定下来,如果可以,那么可能的稳定状态是什么样的?”,或“系统长期的行为是否取决于其初始条件?” | + | 动力系统理论和'''混沌理论 Chaos Theory'''是用来处理动力系统的长期定性行为的理论。寻找动力系统方程的精确解通常是很难达到的。这两个理论的重点不在于找到精确解,而是回答如下的问题,如“系统长期来看是否会稳定下来,如果可以,那么可能的稳定状态是什么样的?”,或“系统长期的行为是否取决于其初始条件?” |
| | | |
| | | |
第51行: |
第51行: |
| An important goal is to describe the fixed points, or steady states of a given dynamical system; these are values of the variable that don't change over time. Some of these fixed points are attractive, meaning that if the system starts out in a nearby state, it converges towards the fixed point. | | An important goal is to describe the fixed points, or steady states of a given dynamical system; these are values of the variable that don't change over time. Some of these fixed points are attractive, meaning that if the system starts out in a nearby state, it converges towards the fixed point. |
| | | |
− | 描述给定动力系统的不动点或'''定态(Steady States)'''是一个重要的目标。不动点或定态的变量值不会随时间的变化而变化。一些不动点是有吸引力的(attractive),即如果系统的初始值在它的附近,系统最终共会收敛到这个不动点。 | + | 描述给定动力系统的不动点或'''定态 Steady States'''是一个重要的目标。不动点或定态的变量值不会随时间的变化而变化。一些不动点是有吸引力的(attractive),即如果系统的初始值在它的附近,系统最终会收敛到这个不动点。 |
− | --[[用户:趣木木|趣木木]]([[用户讨论:趣木木|讨论]])系统最终共会收敛到这个不动点 “共”字是否考虑去掉
| + | |
| | | |
| | | |
第59行: |
第59行: |
| Similarly, one is interested in periodic points, states of the system that repeat after several timesteps. Periodic points can also be attractive. Sharkovskii's theorem is an interesting statement about the number of periodic points of a one-dimensional discrete dynamical system. | | Similarly, one is interested in periodic points, states of the system that repeat after several timesteps. Periodic points can also be attractive. Sharkovskii's theorem is an interesting statement about the number of periodic points of a one-dimensional discrete dynamical system. |
| | | |
− | 人们还对动力系统的'''周期点(Periodic Points)'''感兴趣,即系统在几个时间步之后会不断重复的状态。周期点也可以是有吸引力的。Sharkovskii定理描述了一维离散动力系统的周期点的个数。 | + | 人们还对动力系统的'''周期点 Periodic Points'''感兴趣,即系统在几个时间步之后会不断重复的状态。周期点也可以是有吸引力的。Sharkovskii定理描述了一维离散动力系统的周期点的个数。 |
| | | |
| | | |