第16行: |
第16行: |
| | | |
| 在数学及科学中,非线性系统是一种输出的变化与输入的变化不成比例的系统。大多数系统在本质上是非线性的,因而非线性问题引起了工程师、生物学家、物理学家、数学家和许多其他科学家的兴趣。描述变量随时间变化的非线性动力系统与较之简单得多的线性系统相比,可能显得混沌、不可预测或违反直觉。 | | 在数学及科学中,非线性系统是一种输出的变化与输入的变化不成比例的系统。大多数系统在本质上是非线性的,因而非线性问题引起了工程师、生物学家、物理学家、数学家和许多其他科学家的兴趣。描述变量随时间变化的非线性动力系统与较之简单得多的线性系统相比,可能显得混沌、不可预测或违反直觉。 |
| + | --[[用户:趣木木|趣木木]]([[用户讨论:趣木木|讨论]])我已经通篇读完,觉得记得添加了编者推荐,一些语句进行了微调,查验了一些专有名词,这几点很棒[[用户:趣木木|趣木木]]([[用户讨论:趣木木|讨论]])辛苦一凡,复看的时候删去我的评论即可 |
| | | |
| + | --[[用户:趣木木|趣木木]]([[用户讨论:趣木木|讨论]])对于“非线性系统”这一专业名词 第一次出现 需要中英文加粗 对应自审清单第五条 |
| + | --[[用户:趣木木|趣木木]]([[用户讨论:趣木木|讨论]])大多数系统在本质上是非线性的,因而非线性问题引起了工程师、生物学家、物理学家、数学家和许多其他科学家的兴趣。 这里调整语序很棒,但是因果关系是不是 |
| + | 因为大多数系统在本质上是非线性的,所以非线性问题引起了工程师、生物学家、物理学家、数学家和许多其他科学家的兴趣。 |
| | | |
| | | |
第31行: |
第35行: |
| In other words, in a nonlinear system of equations, the equation(s) to be solved cannot be written as a linear combination of the unknown variables or functions that appear in them. Systems can be defined as nonlinear, regardless of whether known linear functions appear in the equations. In particular, a differential equation is linear if it is linear in terms of the unknown function and its derivatives, even if nonlinear in terms of the other variables appearing in it. | | In other words, in a nonlinear system of equations, the equation(s) to be solved cannot be written as a linear combination of the unknown variables or functions that appear in them. Systems can be defined as nonlinear, regardless of whether known linear functions appear in the equations. In particular, a differential equation is linear if it is linear in terms of the unknown function and its derivatives, even if nonlinear in terms of the other variables appearing in it. |
| | | |
− | 换句话说,在非线性方程系统中,要求解的方程不能被写成未知变量或函数的线性组合。无论方程中是否有已知的线性函数,系统都可以被定义为非线性。特别是,如果一个微分方程的未知函数及其导数是线性的,即使其他变量是非线性的,也称该方程是线性的。
| + | 换句话说,在非线性方程系统中,要求解的方程不能被写成未知变量或函数的线性组合。无论方程中是否有已知的线性函数,系统都可以被定义为非线性。特别是当一个微分方程的未知函数及其导数是线性的,即使其他变量是非线性的,也称该方程是线性的。 |
| | | |
| | | |
第41行: |
第45行: |
| As nonlinear dynamical equations are difficult to solve, nonlinear systems are commonly approximated by linear equations (linearization). This works well up to some accuracy and some range for the input values, but some interesting phenomena such as solitons, chaos, and singularities are hidden by linearization. It follows that some aspects of the dynamic behavior of a nonlinear system can appear to be counterintuitive, unpredictable or even chaotic. Although such chaotic behavior may resemble random behavior, it is in fact not random. For example, some aspects of the weather are seen to be chaotic, where simple changes in one part of the system produce complex effects throughout. This nonlinearity is one of the reasons why accurate long-term forecasts are impossible with current technology. | | As nonlinear dynamical equations are difficult to solve, nonlinear systems are commonly approximated by linear equations (linearization). This works well up to some accuracy and some range for the input values, but some interesting phenomena such as solitons, chaos, and singularities are hidden by linearization. It follows that some aspects of the dynamic behavior of a nonlinear system can appear to be counterintuitive, unpredictable or even chaotic. Although such chaotic behavior may resemble random behavior, it is in fact not random. For example, some aspects of the weather are seen to be chaotic, where simple changes in one part of the system produce complex effects throughout. This nonlinearity is one of the reasons why accurate long-term forecasts are impossible with current technology. |
| | | |
− | 由于非线性动力学方程难以求解,通常用线性化方程来近似非线性系统('''线性化 Linearization''')。这种方法在一定的精度和范围对输入值效果很好,但一些有趣的现象如'''孤子 Soliton'''、'''混沌 Chaos'''和'''奇异性 Singularity'''在线性化后被隐藏。因此,非线性系统的动态行为在某些方面可能看起来违反直觉、不可预测,甚至混沌。尽管这种混沌行为可能感觉很像随机行为,但它实际上并不是随机的。例如,天气的某些方面被认为是混沌的,其系统某部分的微小扰动就会产生复杂的影响。这种非线性是目前技术无法进行精确长期预测的原因之一。 | + | 由于非线性动力学方程难以求解,通常用线性化方程来近似非线性系统('''线性化 Linearization''')。这种方法在一定的精度和范围对输入值效果很好,但一些有趣的现象如'''孤子 Soliton'''、'''混沌 Chaos'''和'''奇异性 Singularity'''在线性化后被隐藏。因此,非线性系统的动态行为在某些方面可能看起来违反直觉、不可预测、甚至混沌。尽管这种混沌行为可能感觉很像随机行为,但它实际上并不是随机的。例如,天气的某些方面被认为是混沌的,其系统某部分的微小扰动就会产生复杂的影响。这种非线性是目前技术无法进行精确长期预测的原因之一。 |
| | | |
| | | |
第94行: |
第98行: |
| Additivity implies homogeneity for any rational α, and, for continuous functions, for any real α. For a complex α, homogeneity does not follow from additivity. For example, an antilinear map is additive but not homogeneous. The conditions of additivity and homogeneity are often combined in the superposition principle: | | Additivity implies homogeneity for any rational α, and, for continuous functions, for any real α. For a complex α, homogeneity does not follow from additivity. For example, an antilinear map is additive but not homogeneous. The conditions of additivity and homogeneity are often combined in the superposition principle: |
| | | |
− | α是有理数,或α是实数且<math>f(x)</math>是连续函数时,由可加性可以推出齐次性。但当α是复数时,可加性不能导出齐次性。例如,反线性映射是可加的,但不是齐次的。可加性和齐次性条件经常组合,称为叠加原理:
| + | 当α是有理数或实数,且<math>f(x)</math>是连续函数时,由可加性可以推出齐次性。但当α是复数时,可加性不能导出齐次性。例如,反线性映射是可加的,但不是齐次的。可加性和齐次性条件经常组合,称为叠加原理: |
| | | |
| <math>f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)</math> | | <math>f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)</math> |
第139行: |
第143行: |
| | | |
| 在线性系统中,整体等于部分和,描述线性系统的方程满足叠加原理,作用的总和正好等于每一部分作用相加的代数和,这意味着每一部分作用都是独立的、互不相关的;而在普遍存在的非线性系统中,作用的总和不等于每一部分作用相加的代数和,因为系统内部要素之间存在着复杂的非线性相互作用。 | | 在线性系统中,整体等于部分和,描述线性系统的方程满足叠加原理,作用的总和正好等于每一部分作用相加的代数和,这意味着每一部分作用都是独立的、互不相关的;而在普遍存在的非线性系统中,作用的总和不等于每一部分作用相加的代数和,因为系统内部要素之间存在着复杂的非线性相互作用。 |
| + | |
| + | --[[用户:趣木木|趣木木]]([[用户讨论:趣木木|讨论]])满足到所需要的需求点,很棒~ |
| | | |
| ==Nonlinear algebraic equations 非线性代数方程== | | ==Nonlinear algebraic equations 非线性代数方程== |
第152行: |
第158行: |
| | | |
| 非线性'''代数方程 Algebraic equation''',又称'''多项式方程 Polynomial equation''',由某多项式(次数大于1)等于零定义。例如: | | 非线性'''代数方程 Algebraic equation''',又称'''多项式方程 Polynomial equation''',由某多项式(次数大于1)等于零定义。例如: |
− | | + | --[[用户:趣木木|趣木木]]([[用户讨论:趣木木|讨论]])注意首字母大写 代数方程 Algebraic Equation 多项式方程 Polynomial Equation 下面的一些专有术语 首字母也未大写 可以查验一下 |
| + | |
| <math>x^2 + x - 1 = 0\,.</math> | | <math>x^2 + x - 1 = 0\,.</math> |
| | | |
第177行: |
第184行: |
| A nonlinear recurrence relation defines successive terms of a sequence as a nonlinear function of preceding terms. Examples of nonlinear recurrence relations are the logistic map and the relations that define the various Hofstadter sequences. Nonlinear discrete models that represent a wide class of nonlinear recurrence relationships include the NARMAX (Nonlinear Autoregressive Moving Average with eXogenous inputs) model and the related nonlinear system identification and analysis procedures. These approaches can be used to study a wide class of complex nonlinear behaviors in the time, frequency, and spatio-temporal domains. | | A nonlinear recurrence relation defines successive terms of a sequence as a nonlinear function of preceding terms. Examples of nonlinear recurrence relations are the logistic map and the relations that define the various Hofstadter sequences. Nonlinear discrete models that represent a wide class of nonlinear recurrence relationships include the NARMAX (Nonlinear Autoregressive Moving Average with eXogenous inputs) model and the related nonlinear system identification and analysis procedures. These approaches can be used to study a wide class of complex nonlinear behaviors in the time, frequency, and spatio-temporal domains. |
| | | |
− | 非线性递归关系中,序列的连续项被定义为其前项的非线性函数。非线性递归关系的例子有 logistic 映射和定义各种'''霍夫斯塔特序列 Hofstadter sequences''' 的关系。非线性离散模型代表了一类广泛的非线性递归关系,包括 NARMAX(外部输入非线性自回归移动平均)模型和相关的非线性系统辨识和分析程序。这些方法可用于研究时域、频域和时空域的广泛复杂非线性行为。 | + | 非线性递归关系中,序列的连续项被定义为其前项的非线性函数。非线性递归关系的例子有 [[logistic 映射]]和定义各种'''霍夫斯塔特序列 Hofstadter sequences''' 的关系。非线性离散模型代表了一类广泛的非线性递归关系,包括 NARMAX(外部输入非线性自回归移动平均)模型和相关的非线性系统辨识和分析程序。这些方法可用于研究时域、频域和时空域的广泛复杂非线性行为。 |
| | | |
| | | |
第279行: |
第286行: |
| | | |
| *将变量转化得更易于研究 | | *将变量转化得更易于研究 |
| + | --[[用户:趣木木|趣木木]]([[用户讨论:趣木木|讨论]])将变量进行代换以便更好的进行研究 是不是好一点点? |
| | | |
| *[[Bifurcation theory]] | | *[[Bifurcation theory]] |
第308行: |
第316行: |
| | | |
| 研究非线性偏微分方程最常用的基本方法是变换变量(或转换问题),使变换后的问题更简单(甚至可能变为线性的)。有时可以将此类方程转化成一或多个常微分方程(如同分离变量法所示),此时不论得到的常微分方程是否可解,对研究问题总是有用的。 | | 研究非线性偏微分方程最常用的基本方法是变换变量(或转换问题),使变换后的问题更简单(甚至可能变为线性的)。有时可以将此类方程转化成一或多个常微分方程(如同分离变量法所示),此时不论得到的常微分方程是否可解,对研究问题总是有用的。 |
| + | --[[用户:趣木木|趣木木]]([[用户讨论:趣木木|讨论]])在数学上 变量代换这个语言方式更加的常见 可以考虑一下是否将变换变量 变为变量代换 符合中文表达 |
| | | |
| | | |
第554行: |
第563行: |
| *[[Self-balancing unicycle]] | | *[[Self-balancing unicycle]] |
| | | |
| + | --[[用户:趣木木|趣木木]]([[用户讨论:趣木木|讨论]])可添加至疑难单词列表 |
| | | |
| | | |