更改

跳到导航 跳到搜索
第140行: 第140行:       −
=== Arithmetic dynamics <font color='red'>算术动态系统</font><font color='blue'>算术动力学</font>===
+
=== Arithmetic dynamics 算术动力学===
    
:[[Arithmetic dynamics]] is a field that emerged in the 1990s that amalgamates two areas of mathematics, [[dynamical systems]] and [[number theory]]. Classically, discrete dynamics refers to the study of the [[Iterated function|iteration]] of self-maps of the [[complex plane]] or [[real line]]. Arithmetic dynamics is the study of the number-theoretic properties of integer, rational, {{math|<var>p</var>}}-adic, and/or algebraic points under repeated application of a [[polynomial]] or [[rational function]].
 
:[[Arithmetic dynamics]] is a field that emerged in the 1990s that amalgamates two areas of mathematics, [[dynamical systems]] and [[number theory]]. Classically, discrete dynamics refers to the study of the [[Iterated function|iteration]] of self-maps of the [[complex plane]] or [[real line]]. Arithmetic dynamics is the study of the number-theoretic properties of integer, rational, {{math|<var>p</var>}}-adic, and/or algebraic points under repeated application of a [[polynomial]] or [[rational function]].
第146行: 第146行:  
Arithmetic dynamics is a field that emerged in the 1990s that amalgamates two areas of mathematics, dynamical systems and number theory. Classically, discrete dynamics refers to the study of the iteration of self-maps of the complex plane or real line. Arithmetic dynamics is the study of the number-theoretic properties of integer, rational, -adic, and/or algebraic points under repeated application of a polynomial or rational function.
 
Arithmetic dynamics is a field that emerged in the 1990s that amalgamates two areas of mathematics, dynamical systems and number theory. Classically, discrete dynamics refers to the study of the iteration of self-maps of the complex plane or real line. Arithmetic dynamics is the study of the number-theoretic properties of integer, rational, -adic, and/or algebraic points under repeated application of a polynomial or rational function.
   −
'''<font color='red'>算术动态系统</font><font color='blue'>算术动力学</font> Arithmetic Dynamics'''是20世纪90年代出现的一个领域,融合了动力系统和数论这两个数学领域。经典的离散动力学研究复平面或<font color='blue'>实直线</font><font color='blue'>实数轴</font>的自映射的迭代。<font color='red'>算术动态系统研究内容是在多项式或有理函数中的整数、有理数、并元 --[[用户:嘉树|嘉树]]([[用户讨论:嘉树|存疑]]) 和/或代数点的数论性质。</font><font color='blue'>算术动力学是在反复应用多项式或有理函数的情况下研究整数,有理数,p进数(p-adic)和/或代数点的数论性质。</font>
+
'''算术动力学 Arithmetic Dynamics'''是20世纪90年代出现的一个领域,融合了动力系统和数论这两个数学领域。经典的离散动力学研究复平面或实直线实数轴的自映射的迭代。算术动力学是在反复应用多项式或有理函数的情况下研究整数,有理数,p进数(p-adic)和/或代数点的数论性质。
      第157行: 第157行:  
Chaos theory describes the behavior of certain dynamical systems – that is, systems whose state evolves with time – that may exhibit dynamics that are highly sensitive to initial conditions (popularly referred to as the butterfly effect). As a result of this sensitivity, which manifests itself as an exponential growth of perturbations in the initial conditions, the behavior of chaotic systems appears random. This happens even though these systems are deterministic, meaning that their future dynamics are fully defined by their initial conditions, with no random elements involved. This behavior is known as deterministic chaos, or simply chaos.
 
Chaos theory describes the behavior of certain dynamical systems – that is, systems whose state evolves with time – that may exhibit dynamics that are highly sensitive to initial conditions (popularly referred to as the butterfly effect). As a result of this sensitivity, which manifests itself as an exponential growth of perturbations in the initial conditions, the behavior of chaotic systems appears random. This happens even though these systems are deterministic, meaning that their future dynamics are fully defined by their initial conditions, with no random elements involved. This behavior is known as deterministic chaos, or simply chaos.
   −
混沌理论描述了某些状态随时间演化的动力系统的行为,这些系统可能表现出对初始条件高度敏感的特点(通常被称为'''蝴蝶效应 Butterfly Effect''')。由于扰动受初始条件影响而指数增长,因此混沌系统具有敏感性,敏感性使它的行为看起来是随机的。但是这种敏感性也会出现在确定的动力系统中,即<font color='blue'>它们</font>未来的动力学<font color='blue'>变化</font>完全由它的初始条件定义,没有任何随机因素参与的系统中。这种现象被称为确定性混沌,或简单混沌。
+
混沌理论描述了某些状态随时间演化的动力系统的行为,这些系统可能表现出对初始条件高度敏感的特点(通常被称为'''蝴蝶效应 Butterfly Effect''')。由于扰动受初始条件影响而指数增长,因此混沌系统具有敏感性,敏感性使它的行为看起来是随机的。但是这种敏感性也会出现在确定的动力系统中,即它们未来的动力学变化完全由它的初始条件定义,没有任何随机因素参与的系统中。这种现象被称为确定性混沌,或简单混沌。
      第167行: 第167行:  
Complex systems is a scientific field that studies the common properties of systems considered complex in nature, society, and science. It is also called complex systems theory, complexity science, study of complex systems and/or sciences of complexity. The key problems of such systems are  difficulties with their formal modeling and simulation. From such perspective, in different research contexts complex systems are defined on the base of their different attributes.
 
Complex systems is a scientific field that studies the common properties of systems considered complex in nature, society, and science. It is also called complex systems theory, complexity science, study of complex systems and/or sciences of complexity. The key problems of such systems are  difficulties with their formal modeling and simulation. From such perspective, in different research contexts complex systems are defined on the base of their different attributes.
   −
'''复杂系统 Complex Systems'''是研究自然、社会和科学中复杂现象的共同性质的科学领域。它也被称为复杂系统理论、复杂性科学、复杂系统研究和关于复杂性的科学。这些系统的关键问题在于对系统的形式化建模与仿真<font color='blue'>的困难</font>。因此,复杂系统是根据在不同的研究语境中的不同属性来定义的。
+
'''复杂系统 Complex Systems'''是研究自然、社会和科学中复杂现象的共同性质的科学领域。它也被称为复杂系统理论、复杂性科学、复杂系统研究和关于复杂性的科学。这些系统的关键问题在于对系统的形式化建模与仿真的困难。因此,复杂系统是根据在不同的研究语境中的不同属性来定义的。
      第175行: 第175行:  
The study of complex systems is bringing new vitality to many areas of science where a more typical reductionist strategy has fallen short. Complex systems is therefore often used as a broad term encompassing a research approach to problems in many diverse disciplines including neurosciences, social sciences, meteorology, chemistry, physics, computer science, psychology, artificial life, evolutionary computation, economics, earthquake prediction, molecular biology and inquiries into the nature of living cells themselves.
 
The study of complex systems is bringing new vitality to many areas of science where a more typical reductionist strategy has fallen short. Complex systems is therefore often used as a broad term encompassing a research approach to problems in many diverse disciplines including neurosciences, social sciences, meteorology, chemistry, physics, computer science, psychology, artificial life, evolutionary computation, economics, earthquake prediction, molecular biology and inquiries into the nature of living cells themselves.
   −
<font color='red'>还原论策略已经不足以研究许多科学领域的问题,而复杂系统的研究则为科学带来了广泛的新活力。</font><font color='blue'>复杂系统的研究为许多科学领域带来了新的活力,在这些领域中,更为典型的还原论策略已经不足。</font>复杂系统通常被用作一个应用广泛的研究方法术语,并涵盖许多不同的学科,包括神经科学、社会科学、气象学、化学、物理学、计算机科学、心理学、人工生命、进化计算、经济学、地震预测、分子生物学以及对活细胞的研究等。
+
复杂系统的研究为许多科学领域带来了新的活力,在这些领域中,更为典型的还原论策略已经不足。复杂系统通常被用作一个应用广泛的研究方法术语,并涵盖许多不同的学科,包括神经科学、社会科学、气象学、化学、物理学、计算机科学、心理学、人工生命、进化计算、经济学、地震预测、分子生物学以及对活细胞的研究等。
      第217行: 第217行:  
The concept of graph dynamical systems (GDS) can be used to capture a wide range of processes taking place on graphs or networks. A major theme in the mathematical and computational analysis of graph dynamical systems is to relate their structural properties (e.g. the network connectivity) and the global dynamics that result.
 
The concept of graph dynamical systems (GDS) can be used to capture a wide range of processes taking place on graphs or networks. A major theme in the mathematical and computational analysis of graph dynamical systems is to relate their structural properties (e.g. the network connectivity) and the global dynamics that result.
   −
'''图动力系统 Graph dynamical systems (GDS)'''可以用来描绘图或网络上发生的各种过程。<font color='red'>图动力系统的数学和计算分析的一个主要主题是关联它们的结构性质(例如:网络连接)和结构性质造成的网络整体的动态结果。</font><font color='blue'>图动力系统的数学和计算分析的一个主要主题是将其结构特性(例如:网络连接性)与其所产生的全局动力学联系起来。</font>
+
'''图动力系统 Graph dynamical systems (GDS)'''可以用来描绘图或网络上发生的各种过程。图动力系统的数学和计算分析的一个主要主题是将其结构特性(例如:网络连接性)与其所产生的全局动力学联系起来。
    
=== Projected dynamical systems 投影动力系统===
 
=== Projected dynamical systems 投影动力系统===
第225行: 第225行:  
Projected dynamical systems it is a mathematical theory investigating the behaviour of dynamical systems where solutions are restricted to a constraint set. The discipline shares connections to and applications with both the static world of optimization and equilibrium problems and the dynamical world of ordinary differential equations. A projected dynamical system is given by the flow to the projected differential equation.
 
Projected dynamical systems it is a mathematical theory investigating the behaviour of dynamical systems where solutions are restricted to a constraint set. The discipline shares connections to and applications with both the static world of optimization and equilibrium problems and the dynamical world of ordinary differential equations. A projected dynamical system is given by the flow to the projected differential equation.
   −
'''投影动力系统 Projected Dynamical Systems'''是研究解在一个约束集内的动力系统行为的数学理论。这门学科与静态世界中的最优化和平衡问题以及动态世界中的常微分方程都有联系<font color='blue'>和<s>,并且都有相互联系的</s></font>应用。一个投影动力系统是由投影微分方程的'''流形 flow'''给定的。
+
'''投影动力系统 Projected Dynamical Systems'''是研究解在一个约束集内的动力系统行为的数学理论。这门学科与静态世界中的最优化和平衡问题以及动态世界中的常微分方程都有联系和应用。一个投影动力系统是由投影微分方程的'''流形 flow'''给定的。
 
通过对投影微分方程的流分析,给出了一个投影动力系统的表达式:
 
通过对投影微分方程的流分析,给出了一个投影动力系统的表达式:
 
:<math>
 
:<math>
第241行: 第241行:     
'''符号动力学 Symbolic Dynamics'''是通过一个由抽象符号的无限序列组成的离散空间建立一个拓扑或光滑动力系统的方法。每一个抽象符号的无限序列序列对应于系统的一个状态,并由移位算子给出动力学(演化)。
 
'''符号动力学 Symbolic Dynamics'''是通过一个由抽象符号的无限序列组成的离散空间建立一个拓扑或光滑动力系统的方法。每一个抽象符号的无限序列序列对应于系统的一个状态,并由移位算子给出动力学(演化)。
<font color='blue'>'''符号动力学 Symbolic Dynamics'''是通过离散空间对拓扑或平滑动力学系统进行建模的方法,该离散空间由无限的抽象符号序列组成,每个抽象符号对应于系统的一个状态,并且由移位运算符给出动力学(演化)。</font>
+
'''符号动力学 Symbolic Dynamics'''是通过离散空间对拓扑或平滑动力学系统进行建模的方法,该离散空间由无限的抽象符号序列组成,每个抽象符号对应于系统的一个状态,并且由移位运算符给出动力学(演化)。
     
259

个编辑

导航菜单