更改

跳到导航 跳到搜索
删除15字节 、 2020年7月14日 (二) 10:30
无编辑摘要
第7行: 第7行:  
Statistical physics is a branch of physics that uses methods of probability theory and statistics, and particularly the mathematical tools for dealing with large populations and approximations, in solving physical problems. It can describe a wide variety of fields with an inherently stochastic nature. Its applications include many problems in the fields of physics, biology, chemistry, neuroscience, and even some social sciences, such as sociology and linguistics. Its main purpose is to clarify the properties of matter in aggregate, in terms of physical laws governing atomic motion.
 
Statistical physics is a branch of physics that uses methods of probability theory and statistics, and particularly the mathematical tools for dealing with large populations and approximations, in solving physical problems. It can describe a wide variety of fields with an inherently stochastic nature. Its applications include many problems in the fields of physics, biology, chemistry, neuroscience, and even some social sciences, such as sociology and linguistics. Its main purpose is to clarify the properties of matter in aggregate, in terms of physical laws governing atomic motion.
   −
统计物理学是物理学的一个分支,它使用概率论和统计学的方法,特别是在解决物理问题时使用数学工具来处理大的群体和近似。它可以描述具有内在随机性的广泛领域。统计物理学的应用领域包括物理学、生物学、化学、神经科学,甚至社会学、语言学等一些社会科学领域。它的主要目的是用控制原子运动的物理定律来阐明凝聚物质的性质。
+
统计物理学是物理学的一个分支,它使用概率论和统计学的方法,特别是在解决物理问题时使用数学工具来处理大的群体和近似。它可以描述具有内在随机性的广泛领域。统计物理的应用领域包括物理学、生物学、化学、神经科学,甚至社会学、语言学等一些社会科学领域。它的主要目的是用支配原子运动的物理定律来阐明凝聚物质的性质。
      第41行: 第41行:  
Statistical mechanics provides a framework for relating the microscopic properties of individual atoms and molecules to the macroscopic or bulk properties of materials that can be observed in everyday life, therefore explaining thermodynamics as a natural result of statistics, classical mechanics, and quantum mechanics at the microscopic level.  Because of this history, statistical physics is often considered synonymous with statistical mechanics or statistical thermodynamics.
 
Statistical mechanics provides a framework for relating the microscopic properties of individual atoms and molecules to the macroscopic or bulk properties of materials that can be observed in everyday life, therefore explaining thermodynamics as a natural result of statistics, classical mechanics, and quantum mechanics at the microscopic level.  Because of this history, statistical physics is often considered synonymous with statistical mechanics or statistical thermodynamics.
   −
统计力学提供了一个将单个原子和分子的微观属性与日常生活中可以观测到的物质的宏观或体特性联系起来的框架,从而在微观层面上解释了热力学作为统计、经典力学和量子力学的自然结果。由于这段历史,统计物理学常常被认为是统计力学或统计热力学的同义词。
+
统计力学提供了一个将单个原子和分子的微观属性与日常生活中可以观测到的物质的宏观特性联系起来的框架,从而在微观层面上解释了热力学作为统计学、经典力学和量子力学的自然结果。由于这段历史,统计物理学常常被认为是统计力学或统计热力学的同义词。
      第71行: 第71行:  
where <math>k_B</math> is the Boltzmann constant, <math>T</math> is temperature and  <math>E(q)</math> is energy of state  <math>q</math>. Furthermore, the probability of a given state, <math>q</math>, occurring is given by
 
where <math>k_B</math> is the Boltzmann constant, <math>T</math> is temperature and  <math>E(q)</math> is energy of state  <math>q</math>. Furthermore, the probability of a given state, <math>q</math>, occurring is given by
   −
其中<math>k_B</math>是波兹曼常数,<math>T</math> 是温度,<math>E(q)</math> 是状态<math>q</math>的能量。此外,给定状态 <math>q</math>出现的概率是
+
其中<math>k_B</math>是玻尔兹曼常数,<math>T</math> 是温度,<math>E(q)</math> 是状态<math>q</math>的能量。此外,给定状态 <math>q</math>出现的概率是
      第91行: 第91行:  
Here we see that very-high-energy states have little probability of occurring, a result that is consistent with intuition.
 
Here we see that very-high-energy states have little probability of occurring, a result that is consistent with intuition.
   −
这里我们看到,极高能量状态出现的可能性很小,这个结果与直觉是一致的。
+
这里,极高能量状态出现的概率很小,这个结果与直觉是一致的。
      第127行: 第127行:  
Quantum statistical mechanics is statistical mechanics applied to quantum mechanical systems. In quantum mechanics a statistical ensemble (probability distribution over possible quantum states) is described by a density operator S, which is a non-negative, self-adjoint, trace-class operator of trace 1 on the Hilbert space H describing the quantum system.  This can be shown under various mathematical formalisms for quantum mechanics.  One such formalism is provided by quantum logic.
 
Quantum statistical mechanics is statistical mechanics applied to quantum mechanical systems. In quantum mechanics a statistical ensemble (probability distribution over possible quantum states) is described by a density operator S, which is a non-negative, self-adjoint, trace-class operator of trace 1 on the Hilbert space H describing the quantum system.  This can be shown under various mathematical formalisms for quantum mechanics.  One such formalism is provided by quantum logic.
   −
量子统计力学是应用于量子力学系统的统计力学。在量子力学中,系综(可能量子态的概率分布)由密度算符S来描述,它是一个描述量子系统希尔伯特空间 H 上的非负的、自伴随的、迹1的迹类算符。这可以在量子力学的不同数学形式上来表示。量子逻辑就是这样一种形式。
+
量子统计力学是应用于量子力学系统的统计力学。在量子力学中,系综(可能量子态的概率分布)由密度算符S来描述,它是一个描述量子系统希尔伯特空间 H 上的非负的、自伴随的、迹为1的迹类算符。这可以在量子力学的不同数学形式上来表示。量子逻辑就是这样一种形式。
      第143行: 第143行:  
A significant contribution (at different times) in development of statistical physics was given by Satyendra Nath Bose, James Clerk Maxwell, Ludwig Boltzmann, J. Willard Gibbs, Marian Smoluchowski, Albert Einstein, Enrico Fermi, Richard Feynman, Lev Landau, Vladimir Fock, Werner Heisenberg, Nikolay Bogolyubov, Benjamin Widom, Lars Onsager, Benjamin and Jeremy Chubb (also inventors of the titanium sublimation pump), Humb, Manoo, and others. Statistical physics is studied in the nuclear center at Los Alamos. Also, Pentagon has organized a large department for the study of turbulence at Princeton University. Work in this area is also being conducted by Saclay (Paris), Max Planck Institute, Netherlands Institute for Atomic and Molecular Physics and other research centers.
 
A significant contribution (at different times) in development of statistical physics was given by Satyendra Nath Bose, James Clerk Maxwell, Ludwig Boltzmann, J. Willard Gibbs, Marian Smoluchowski, Albert Einstein, Enrico Fermi, Richard Feynman, Lev Landau, Vladimir Fock, Werner Heisenberg, Nikolay Bogolyubov, Benjamin Widom, Lars Onsager, Benjamin and Jeremy Chubb (also inventors of the titanium sublimation pump), Humb, Manoo, and others. Statistical physics is studied in the nuclear center at Los Alamos. Also, Pentagon has organized a large department for the study of turbulence at Princeton University. Work in this area is also being conducted by Saclay (Paris), Max Planck Institute, Netherlands Institute for Atomic and Molecular Physics and other research centers.
   −
萨特延德拉·纳特·玻色、詹姆斯·克拉克·麦克斯韦、路德维希·玻尔兹曼、约西亚·威拉德·吉布斯、马利安·斯莫鲁霍夫斯基、阿尔伯特·爱因斯坦、恩里科·费米,理查德·费曼、列弗·兰道、弗拉基米尔·福克、维尔纳·海森堡、尼古拉·博戈柳博夫、本杰明·维多姆、昂萨格、本杰明和杰里米·丘布(也是钛升华泵的发明者)、亨伯、马诺等人在不同时期对统计物理学的发展做出了重大贡献。统计物理学在洛斯阿拉莫斯的核中心被广泛研究。此外,五角大楼已经在普林斯顿大学组织了一个大的部门来研究湍流。萨克雷(巴黎)、马克斯 · 普朗克研究所、荷兰原子与分子物理研究所和其他研究中心也在进行这方面的工作。
+
萨特延德拉·纳特·玻色、詹姆斯·克拉克·麦克斯韦、路德维希·玻尔兹曼、约西亚·威拉德·吉布斯、马利安·斯莫鲁霍夫斯基、阿尔伯特·爱因斯坦、恩里科·费米,理查德·费曼、列夫·朗道、弗拉基米尔·福克、维尔纳·海森堡、尼古拉·博戈柳博夫、本杰明·维多姆、昂萨格、本杰明和杰里米·丘布(也是钛升华泵的发明者)、亨伯、马诺等人在不同时期对统计物理学的发展做出了重大贡献。统计物理学在洛斯阿拉莫斯的核中心被广泛研究。此外,五角大楼已经在普林斯顿大学组织了一个大的部门来研究湍流。萨克雷(巴黎)、马克斯 · 普朗克研究所、荷兰原子与分子物理研究所和其他研究中心也在进行这方面的工作。
     
11

个编辑

导航菜单