{{quote|The law that entropy always increases holds, I think, the supreme position among the [[Laws of science|laws of Nature]]. If someone points out to you that your pet theory of the [[universe]] is in disagreement with [[Maxwell's equations]] – then so much the worse for Maxwell's equations. If it is found to be contradicted by observation – well, these experimentalists do bungle things sometimes. But if your theory is found to be against the second law of thermodynamics I can give you no hope; there is nothing for it but to collapse in deepest humiliation.|Sir [[Arthur Stanley Eddington]], ''The Nature of the Physical World'' (1927)}}
{{quote|The law that entropy always increases holds, I think, the supreme position among the [[Laws of science|laws of Nature]]. If someone points out to you that your pet theory of the [[universe]] is in disagreement with [[Maxwell's equations]] – then so much the worse for Maxwell's equations. If it is found to be contradicted by observation – well, these experimentalists do bungle things sometimes. But if your theory is found to be against the second law of thermodynamics I can give you no hope; there is nothing for it but to collapse in deepest humiliation.|Sir [[Arthur Stanley Eddington]], ''The Nature of the Physical World'' (1927)}}
{{quote|Clausius is the author of the sibyllic utterance, "The energy of the universe is constant; the entropy of the universe tends to a maximum." The objectives of continuum thermomechanics stop far short of explaining the "universe", but within that theory we may easily derive an explicit statement in some ways reminiscent of Clausius, but referring only to a modest object: an isolated body of finite size.|[[Clifford Truesdell|Truesdell, C.]], Muncaster, R. G. (1980). ''Fundamentals of Maxwell's Kinetic Theory of a Simple Monatomic Gas, Treated as a Branch of Rational Mechanics'', Academic Press, New York, {{ISBN|0-12-701350-4}}, p. 17.}}
{{quote|Clausius is the author of the sibyllic utterance, "The energy of the universe is constant; the entropy of the universe tends to a maximum." The objectives of continuum thermomechanics stop far short of explaining the "universe", but within that theory we may easily derive an explicit statement in some ways reminiscent of Clausius, but referring only to a modest object: an isolated body of finite size.|[[Clifford Truesdell|Truesdell, C.]], Muncaster, R. G. (1980). ''Fundamentals of Maxwell's Kinetic Theory of a Simple Monatomic Gas, Treated as a Branch of Rational Mechanics'', Academic Press, New York, {{ISBN|0-12-701350-4}}, p. 17.}}