− | 有时被称为 Jerk 等式。证明了 Jerk 方程等价于三个一阶非线性常微分方程组,在某种意义上是表现混沌行为的解的最小设定。这激发了人们对挺举系统的数学兴趣。含有四阶或更高阶导数的系统称为相应的超挺举系统。<ref>K. E. Chlouverakis and J. C. Sprott, Chaos Solitons & Fractals 28, 739–746 (2005), Chaotic Hyperjerk Systems, http://sprott.physics.wisc.edu/pubs/paper297.htm</ref> | + | 有时被称为 就jerk 等式。证明了 jerk 方程等价于三个一阶非线性常微分方程组,在某种意义上是表现混沌行为的解的最小设定。这激发了人们对挺举系统的数学兴趣。含有四阶或更高阶导数的系统称为相应的超挺举系统。<ref>K. E. Chlouverakis and J. C. Sprott, Chaos Solitons & Fractals 28, 739–746 (2005), Chaotic Hyperjerk Systems, http://sprott.physics.wisc.edu/pubs/paper297.htm</ref> |
− | 1977年12月,纽约科学院组织了第一次关于混沌的研讨会,出席的有大卫·鲁尔 David Ruelle、[[罗伯特·梅 Robert May]]、詹姆斯·a·约克 James A. Yorke(数学中“混沌”一词的创始人)、罗伯特·肖 Robert Shaw和气象学家爱德华·洛伦兹 Edward Lorenz。第二年 Pierre Coullet 和 Charles Tresser 发表了《迭代与重整化群体 Iterations d'endomorphismes et groupe de renormalisation》 ,米切尔·费根鲍姆 Mitchell Feigenbaum的文章《一类非线性变换的定量普遍性 Quantitative Universality for a Class of Nonlinear Transformations》最终发表在一本杂志上,经过三年的裁判拒绝。<ref name="Feigenbaum 25–52"/><ref>Coullet, Pierre, and Charles Tresser. "Iterations d'endomorphismes et groupe de renormalisation." Le Journal de Physique Colloques 39.C5 (1978): C5-25</ref> 因此 Feigenbaum (1975)和 Coullet & Tresser (1978)发现了混沌中的普遍性,允许混沌理论应用于许多不同的现象。 | + | 1977年12月,纽约科学院组织了第一次关于混沌的研讨会,出席的有大卫·鲁尔 David Ruelle、[[罗伯特·梅 Robert May]]、詹姆斯·A·约克 James A. Yorke(数学中“混沌”一词的创始人)、罗伯特·肖 Robert Shaw和气象学家爱德华·洛伦兹 Edward Lorenz。第二年 Pierre Coullet 和 Charles Tresser 发表了《迭代与重整化群体 Iterations d'endomorphismes et groupe de renormalisation》 ,米切尔·费根鲍姆 Mitchell Feigenbaum的文章《一类非线性变换的定量普遍性 Quantitative Universality for a Class of Nonlinear Transformations》最终发表在一本杂志上,经过三年的裁判拒绝。<ref name="Feigenbaum 25–52"/><ref>Coullet, Pierre, and Charles Tresser. "Iterations d'endomorphismes et groupe de renormalisation." Le Journal de Physique Colloques 39.C5 (1978): C5-25</ref> 因此 Feigenbaum (1975)和 Coullet & Tresser (1978)发现了混沌中的普遍性,允许混沌理论应用于许多不同的现象。 |
− | 1979年,Albert j. Libchaber 在皮埃尔·奥昂贝格 Pierre Hohenberg在阿斯彭组织的一次研讨会上,提出了他对瑞利-贝纳德对流系统 Rayleigh–Bénard convection中导致混沌和湍流的分岔理论级联的实验观察。1986年,由于他们令人鼓舞的成就,他和Mitchell Feigenbaum一起被授予沃尔夫物理学奖。 | + | 1979年,Albert J. Libchaber 在皮埃尔·奥昂贝格 Pierre Hohenberg在阿斯彭组织的一次研讨会上,提出了他对瑞利-贝纳德对流系统 Rayleigh–Bénard convection中导致混沌和湍流的分岔理论级联的实验观察。1986年,由于他们令人鼓舞的成就,他和Mitchell Feigenbaum一起被授予沃尔夫物理学奖。 |