更改

跳到导航 跳到搜索
第33行: 第33行:  
其实有一种可能能很好的解释这个表面上的悖论,那就是刘谦之前根本没有在纸上写下任何字母,只有当观众说出他心目中的数字的时候,刘谦再用魔术的手法快速地在纸上写下观众说出的数字。<br>
 
其实有一种可能能很好的解释这个表面上的悖论,那就是刘谦之前根本没有在纸上写下任何字母,只有当观众说出他心目中的数字的时候,刘谦再用魔术的手法快速地在纸上写下观众说出的数字。<br>
 
换句话说,也就是刘谦可以通过一张空白的纸条,来应付观众在'''动态的交互过程中的不确定性'''。这种不确定性就是我所说的交互的不确定性,也就是说系统的行为是完全依赖事后观察者对它的观察行为,它与传统概率所描述的不确定性是完全不同的。我认为,'''量子概率恰恰描述了这种交互性的不确定性!'''为了更好的理解量子概率和可交互的不确定性之间的关系,让我们从量子力学中最著名的[https://en.wikipedia.org/wiki/Double-slit_experiment 双缝试验]说起。<br>
 
换句话说,也就是刘谦可以通过一张空白的纸条,来应付观众在'''动态的交互过程中的不确定性'''。这种不确定性就是我所说的交互的不确定性,也就是说系统的行为是完全依赖事后观察者对它的观察行为,它与传统概率所描述的不确定性是完全不同的。我认为,'''量子概率恰恰描述了这种交互性的不确定性!'''为了更好的理解量子概率和可交互的不确定性之间的关系,让我们从量子力学中最著名的[https://en.wikipedia.org/wiki/Double-slit_experiment 双缝试验]说起。<br>
 +
    
===双缝试验与交互不确定性===
 
===双缝试验与交互不确定性===
    
[[File:xtzdgcz3_4g.gif|center|thumb|图3-4 双缝干涉实验]]<br>
 
[[File:xtzdgcz3_4g.gif|center|thumb|图3-4 双缝干涉实验]]<br>
这是一个经典的量子力学试验,假设O点是一个电子源能够源源不断地发射电子,电子经过AB屏的两个缝隙A和B后会发生干涉现象。从而在l屏上形成干涉条纹。我们可以减小O发射电子的强度,使得每次只能发射一个电子。这样,l屏上的干涉条纹就表示电子打到该点的概率。<br>
+
这是一个经典的量子力学试验,假设O点是一个电子源能够源源不断地发射电子,电子经过AB屏的两个缝隙A和B后会发生干涉现象。从而在l屏上形成干涉条纹。我们可以减小O发射电子的强度,使得每次只能发射一个电子。这样,l屏上的干涉条纹就表示电子打到该点的概率。
假如我在A点处放一个探测电子是否经过A缝的仪器,只要我能读出电子是否已经经过了该点,这种测量行为就会直接干扰在C点发现电子的概率大小。如果电子是小球,我们知道这种观测行为是不会对小球到达C点的概率发生任何影响的。所以,量子力学所描述的对象具有交互不确定性。<br>
+
 
为了更清楚地看出这种交互不确定性,让我们将双缝试验和之前所说的刘谦的魔术进行对比。假设刘谦的魔术仅仅限定在0和1两个数字之间。那么刘谦写下了一个数字在纸片上就相当于我们的粒子发射器发射出来一个电子。观众对这张纸上面的数字猜测是0还是1就相对在A,B屏的地方放置探测器考察粒子是经过了A还是经过了B。最后刘谦把纸条打开就相当于我们在l屏处观测电子,并且发现数字是0对应粒子达到了C点,是1则对应没达到。<br>
+
 
 +
假如我在A点处放一个探测电子是否经过A缝的仪器,只要我能读出电子是否已经经过了该点,这种测量行为就会直接干扰在C点发现电子的概率大小。如果电子是小球,我们知道这种观测行为是不会对小球到达C点的概率发生任何影响的。所以,量子力学所描述的对象具有交互不确定性。
 +
 
 +
 
 +
为了更清楚地看出这种交互不确定性,让我们将双缝试验和之前所说的刘谦的魔术进行对比。假设刘谦的魔术仅仅限定在0和1两个数字之间。那么刘谦写下了一个数字在纸片上就相当于我们的粒子发射器发射出来一个电子。观众对这张纸上面的数字猜测是0还是1就相对在A,B屏的地方放置探测器考察粒子是经过了A还是经过了B。最后刘谦把纸条打开就相当于我们在l屏处观测电子,并且发现数字是0对应粒子达到了C点,是1则对应没达到。
 +
 
 +
 
 
如果观众不去猜纸条上的数字,刘谦直接打开纸条,就相当于我们不在AB屏的地方安置探测器,而直接观测C点的结果。如果观众猜纸条上的数字之后再去打开纸条就相当于我们从A,B处进行了一次观测之后再去考察电子飞到C点的情况。打开刘谦的纸条总能得到正确的结果是因为刘谦会利用魔术根据观众的观测,动态的更改纸条上的数字,同样在A点观测电子和不观测电子得到在C点完全不同的概率也是因为电子会根据观察者的观测行为动态地改变自身。<br>
 
如果观众不去猜纸条上的数字,刘谦直接打开纸条,就相当于我们不在AB屏的地方安置探测器,而直接观测C点的结果。如果观众猜纸条上的数字之后再去打开纸条就相当于我们从A,B处进行了一次观测之后再去考察电子飞到C点的情况。打开刘谦的纸条总能得到正确的结果是因为刘谦会利用魔术根据观众的观测,动态的更改纸条上的数字,同样在A点观测电子和不观测电子得到在C点完全不同的概率也是因为电子会根据观察者的观测行为动态地改变自身。<br>
 +
    
===量子概率运算法则===
 
===量子概率运算法则===
   −
  为了使上面的讨论更加精确,让我们对量子概率运算法则进行一些简单的介绍。还是以双缝干涉实验的例子出发,我们先给出经典概率运算法则,之后再与量子概率运算法则进行对比。<br>
+
为了使上面的讨论更加精确,让我们对量子概率运算法则进行一些简单的介绍。还是以双缝干涉实验的例子出发,我们先给出经典概率运算法则,之后再与量子概率运算法则进行对比。<br>
 +
 
 +
 
 
  首先,我们可以把双缝试验改写成一个经典的[https://en.wikipedia.org/wiki/Markov_chain 马尔科夫链]:
 
  首先,我们可以把双缝试验改写成一个经典的[https://en.wikipedia.org/wiki/Markov_chain 马尔科夫链]:
[[File:xtzdgcz3_5g.gif|图3-5|居中]]<br>
+
[[File:xtzdgcz3_5g.gif|center|thumb|图3-5 描述粒子行为的马尔科夫链]]<br>
<center>图3-5  描述粒子行为的马尔科夫链</center><br>
   
  设电子(经典粒子)从O点飞出,以P<sub>OA</sub>的概率飞到A点或者以P<sub>OB</sub>的概率飞到B点,然后再以概率P<sub>AC</sub>飞到C点或者以P<sub>AD</sub>的概率飞到不是C的点(我们暂且称之为D点)。那么,我们在C点发现电子的概率就应该是:<br>
 
  设电子(经典粒子)从O点飞出,以P<sub>OA</sub>的概率飞到A点或者以P<sub>OB</sub>的概率飞到B点,然后再以概率P<sub>AC</sub>飞到C点或者以P<sub>AD</sub>的概率飞到不是C的点(我们暂且称之为D点)。那么,我们在C点发现电子的概率就应该是:<br>
 
<center>[[File:xtzdgcz3_6g.gif]]      (1)</center><br>
 
<center>[[File:xtzdgcz3_6g.gif]]      (1)</center><br>
7,129

个编辑

导航菜单