第1行: |
第1行: |
| | | |
− | '''动力系统理论 Dynamical Systems Theory'''是数学领域中的一部分.主要在描述复杂的动力系统,一般会用微分方程或差分方程来表示。当采用微分方程时,该理论被称为“连续动力系统”,若用差分方程来表示,则称为“离散动力系统”。若其时间只在一些特定区域连续,在其余区域离散,或时间是任意的时间集合(像康托尔集),需要用时标微积分来处理。有时也会需要用混合的算子来处理,像微分差分。从物理学的角度来看,连续动力系统是经典力学的推广,也是运动方程的推广,不受极小作用原理[[欧拉-拉格朗日方程]]的约束。当采用差分方程时,该理论被称为[[离散动力系统]]。当时间变量运行在一个某些区间离散、其他区间连续的集合、或者像[[cantor集]]一样任意的时间集合上时,人们就能得到时间尺度上的动力方程。[[算子]](Operators)是一个函数空间到函数空间上的映射O:X→X,广义的讲,对任何函数进行某一项操作都可以认为是一个算子,如求幂次、求微分等。某些情况下,也可以用[[混合算子]](Mixed Operators)来建模,如微分-差分方程。 | + | '''动力系统理论 Dynamical Systems Theory'''是数学领域中的一部分.主要在描述复杂的动力系统,一般会用微分方程或差分方程来表示。当采用微分方程时,该理论被称为“连续动力系统”,若用差分方程来表示,则称为“离散动力系统”。若其时间只在一些特定区域连续,在其余区域离散,或时间是任意的时间集合(像康托尔集),需要用时标微积分来处理。有时也会需要用混合的算子来处理,像微分差分。从物理学的角度来看,连续动力系统是经典力学的推广,也是运动方程的推广,不受极小作用原理[[欧拉-拉格朗日方程]]的约束。当采用差分方程时,该理论被称为[[离散动力系统]]。当时间变量运行在一个某些区间离散、其他区间连续的集合、或者像[[cantor集]]一样任意的时间集合上时,人们就能得到时间尺度上的动力方程。[[算子]](Operators)是一个函数空间到函数空间上的映射O:X→X,广义的讲,对任何函数进行某一项操作都可以认为是一个算子,如求幂次、求微分等。某些情况下,也可以用[[混合算子]](Mixed Operators)来建模,如微分-差分方程。 |
| | | |
− | 该理论涉及动力学系统的长期定性行为,研究了通常以机械或物理性质为主的系统(例如行星轨道和行星)的运动方程式的性质以及其常用的的解决方案,电子电路的求解方式以及[[生物学]],[[经济学]]等领域产生的系统。许多现代研究集中在[[混沌系统]]的研究上。
| + | 该理论涉及动力学系统的长期定性行为,研究了通常以机械或物理性质为主的系统(例如行星轨道和行星)的运动方程式的性质以及其常用的的解决方案,电子电路的求解方式以及[[生物学]],[[经济学]]等领域产生的系统。许多现代研究集中在[[混沌系统]]的研究上。 |
| | | |
| 这个研究领域也被称为动力学系统,数学动力学系统理论或动力学系统数学理论。 | | 这个研究领域也被称为动力学系统,数学动力学系统理论或动力学系统数学理论。 |
第13行: |
第13行: |
| 对给定动力系统的研究的一个重要方向就是求动力系统的不动点或稳态。不动点或稳态的的值不会随时间的变化而变化,在不动点的附近,不动点对系统具有收敛性。也就是说如果系统的初始值在它的附近,系统最终会收敛到这个不动点。 | | 对给定动力系统的研究的一个重要方向就是求动力系统的不动点或稳态。不动点或稳态的的值不会随时间的变化而变化,在不动点的附近,不动点对系统具有收敛性。也就是说如果系统的初始值在它的附近,系统最终会收敛到这个不动点。 |
| | | |
− | 动力系统的[[周期点]](Periodic Points)也是一个具有前景的研究方向,周期点为系统在重复几个周期后之后的状态。周期点也是具有系统的收敛性,也可称做该点具有吸引力(attactive)的。[[Sharkovskii定理]]描述了一维离散动力系统的周期点的个数。 | + | 动力系统的[[周期点]](Periodic Points)也是一个具有前景的研究方向,周期点为系统在重复几个周期后之后的状态。周期点也是具有系统的收敛性,也可称做该点具有吸引力(attactive)的。[[Sharkovskii定理]]描述了一维离散动力系统的周期点的个数。 |
| | | |
| 即使是简单的非线性动力系统也常常表现出看似随机的行为,这种行为被称为混沌chaos<ref>{{cite journal |last=Grebogi |first=C. |last2=Ott |first2=E. |last3=Yorke |first3=J. |year=1987 |title=Chaos, Strange Attractors, and Fractal Basin Boundaries in Nonlinear Dynamics |journal=[[Science (journal)|Science]] |volume=238 |issue=4827 |pages=632–638 |doi=10.1126/science.238.4827.632 |pmid=17816542 |bibcode=1987Sci...238..632G }}</ref>。动力学系统中涉及混沌的清晰定义和研究的分支称为[[混沌理论]]。 | | 即使是简单的非线性动力系统也常常表现出看似随机的行为,这种行为被称为混沌chaos<ref>{{cite journal |last=Grebogi |first=C. |last2=Ott |first2=E. |last3=Yorke |first3=J. |year=1987 |title=Chaos, Strange Attractors, and Fractal Basin Boundaries in Nonlinear Dynamics |journal=[[Science (journal)|Science]] |volume=238 |issue=4827 |pages=632–638 |doi=10.1126/science.238.4827.632 |pmid=17816542 |bibcode=1987Sci...238..632G }}</ref>。动力学系统中涉及混沌的清晰定义和研究的分支称为[[混沌理论]]。 |
第23行: |
第23行: |
| 在高速计算机器出现之前,解决动力系统问题需要复杂的数学技能,而且还只能解决一小类动力系统问题。 | | 在高速计算机器出现之前,解决动力系统问题需要复杂的数学技能,而且还只能解决一小类动力系统问题。 |
| | | |
− | 一些优秀的数学动力系统理论学家包括贝尔特拉米 Beltrami(1990年),龙伯格Luenberger(1979年),帕杜罗&阿尔比布 Padulo&Arbib(1974年)和斯托加茨 Strogatz(1994年)<ref>Jerome R. Busemeyer (2008), [http://www.cogs.indiana.edu/Publications/techreps2000/241/241.html "Dynamic Systems"]. To Appear in: ''Encyclopedia of cognitive science'', Macmillan. Retrieved 8 May 2008.</ref>等在该领域做出了杰出的贡献。 | + | 一些优秀的数学动力系统理论学家包括贝尔特拉米 Beltrami(1990年),龙伯格Luenberger(1979年),帕杜罗&阿尔比布 Padulo&Arbib(1974年)和斯托加茨 Strogatz(1994年)<ref>Jerome R. Busemeyer (2008), [http://www.cogs.indiana.edu/Publications/techreps2000/241/241.html "Dynamic Systems"]. To Appear in: ''Encyclopedia of cognitive science'', Macmillan. Retrieved 8 May 2008.</ref>等在该领域做出了杰出的贡献。 |
| | | |
| ==概念== | | ==概念== |
第49行: |
第49行: |
| ===混沌理论=== | | ===混沌理论=== |
| | | |
− | [[混沌理论]](Chaos theory)描述了某些状态随时间演化的动力系统的行为,这些系统可能表现出对初始条件高度敏感的特点(通常被称为蝴蝶效应 (Butterfly Effect))。由于这种敏感性,在初始条件下表现为扰动呈指数增长,因此混沌系统的行为似乎是随机的。即使这些系统是确定性的,也会发生这种情况,这意味着它们的未来动力完全由其初始条件定义,而没有涉及随机元素。这种行为称为确定性混乱,或简称为混乱。 | + | [[混沌理论]](Chaos theory)描述了某些状态随时间演化的动力系统的行为,这些系统可能表现出对初始条件高度敏感的特点(通常被称为蝴蝶效应 (Butterfly Effect))。由于这种敏感性,在初始条件下表现为扰动呈指数增长,因此混沌系统的行为似乎是随机的。即使这些系统是确定性的,也会发生这种情况,这意味着它们的未来动力完全由其初始条件定义,而没有涉及随机元素。这种行为称为确定性混乱,或简称为混乱。 |
| | | |
| === 复杂系统=== | | === 复杂系统=== |
第59行: |
第59行: |
| === 控制理论=== | | === 控制理论=== |
| | | |
− | [[控制理论]](Control Theory)是工程和数学的一个交叉学科。控制理论是一个研究如何调整动态系统特性的理论,它也是工程和数学的一个交叉学科,逐渐的应用在许多社会科学中,例如心理学、社会学(社会学中的控制理论)、犯罪学及金融系统(Financial System)。控制理论一般的目的是借由控制器的动作让系统稳定,也就是系统维持在设定值,而且不会在设定值附近晃动。维持设定值保持小范围稳定甚至不变的控制行为称为控制调节,设定值快速变化,对于跟踪速度加速度等的控制要求较高的控制行为称为伺服。控制理论的研究的一部分研究对于动力系统行为的研究产生了深远的影响。 | + | [[控制理论]](Control Theory)是工程和数学的一个交叉学科。控制理论是一个研究如何调整动态系统特性的理论,它也是工程和数学的一个交叉学科,逐渐的应用在许多社会科学中,例如心理学、社会学(社会学中的控制理论)、犯罪学及金融系统(Financial System)。控制理论一般的目的是借由控制器的动作让系统稳定,也就是系统维持在设定值,而且不会在设定值附近晃动。维持设定值保持小范围稳定甚至不变的控制行为称为控制调节,设定值快速变化,对于跟踪速度加速度等的控制要求较高的控制行为称为伺服。控制理论的研究的一部分研究对于动力系统行为的研究产生了深远的影响。 |
| | | |
| === 遍历理论=== | | === 遍历理论=== |
第71行: |
第71行: |
| ===图动力系统=== | | ===图动力系统=== |
| | | |
− | [[图动力系统]](Graph dynamical systems (GDS))可以用来描绘图或网络上发生的各种过程。图动力系统的数学和计算分析的一个主要主题是将其结构特性(例如:网络连接性)与其所产生的全局动力学联系起来。 | + | [[图动力系统]](Graph dynamical systems (GDS))可以用来描绘图或网络上发生的各种过程。图动力系统的数学和计算分析的一个主要主题是将其结构特性(例如:网络连接性)与其所产生的全局动力学联系起来。 |
| | | |
| ===投影动力系统=== | | ===投影动力系统=== |
第84行: |
第84行: |
| ===符号动力学=== | | ===符号动力学=== |
| | | |
− | [[符号动力学]](Symbolic Dynamics)是通过离散空间对拓扑或平滑动力学系统进行建模的方法,该离散空间由无限的抽象符号序列组成,每个抽象符号对应于系统的一个状态,并且动态(演化)由移位运算符给出。 | + | [[符号动力学]](Symbolic Dynamics)是通过离散空间对拓扑或平滑动力学系统进行建模的方法,该离散空间由无限的抽象符号序列组成,每个抽象符号对应于系统的一个状态,并且动态(演化)由移位运算符给出。 |
| | | |
| ===系统动力学=== | | ===系统动力学=== |
第98行: |
第98行: |
| ===在运动生物力学中的应用=== | | ===在运动生物力学中的应用=== |
| | | |
− | 在运动生物力学中,动力系统理论在运动科学中展露头角,成为一种对运动表现建模的可行框架。从动力系统的角度来看,人类的运动系统是由高度复杂和相互依赖的子系统网络(如呼吸、循环、神经、骨骼肌系统和知觉系统等)组成的,它们由大量相互作用的部分组成(包括血细胞、氧分子、肌肉组织、代谢酶、结缔组织和骨骼等)。动力系统理论中,运动模式通过物理系统和生物系统中的一般自组织过程出现。没有任何研究证实与这一框架的概念应用相关的任何主张。
| + | 在运动生物力学中,动力系统理论在运动科学中展露头角,成为一种对运动表现建模的可行框架。从动力系统的角度来看,人类的运动系统是由高度复杂和相互依赖的子系统网络(如呼吸、循环、神经、骨骼肌系统和知觉系统等)组成的,它们由大量相互作用的部分组成(包括血细胞、氧分子、肌肉组织、代谢酶、结缔组织和骨骼等)。动力系统理论中,运动模式通过物理系统和生物系统中的一般自组织过程出现。没有任何研究证实与这一框架的概念应用相关的任何主张。 |
| | | |
| ===在认知科学中的应用=== | | ===在认知科学中的应用=== |
| | | |
− | 动力系统理论已经被应用于神经科学和认知发展领域,特别是在认知发展的新皮亚杰学派(neo-Piagetian)中。人们相信,物理学理论比句法学理论和人工智能理论更能代表认知发展。人们还相信微分方程是人类行为建模最合适的工具。人们认为微分方程可以解释为通过状态空间代表一个主体的认知轨迹的算式。换句话说,动力学家认为心理学应该是(或者就是)(通过微分方程)描述在一定的环境和内部压力下的主体的认知和行为的学科。混沌理论在相关领域也经常被采用。
| + | 动力系统理论已经被应用于神经科学和认知发展领域,特别是在认知发展的新皮亚杰学派(neo-Piagetian)中。人们相信,物理学理论比句法学理论和人工智能理论更能代表认知发展。人们还相信微分方程是人类行为建模最合适的工具。人们认为微分方程可以解释为通过状态空间代表一个主体的认知轨迹的算式。换句话说,动力学家认为心理学应该是(或者就是)(通过微分方程)描述在一定的环境和内部压力下的主体的认知和行为的学科。混沌理论在相关领域也经常被采用。 |
| | | |
− | 在学习的过程中,旧的模式被打破,学习者的思维达到了一种不平衡的状态。这是认知发展的阶段性转变。自组织随活动水平(Activity Levels)相互联系时产生。新形成的宏观和微观结构相互支持,加速了这一过程。这些联系在头脑中形成了一种有序的新状态结构,这个过程被称为“扇贝化(Scalloping)”,也就是头脑的复杂表现的不断累积和崩溃的过程。这种新的状态是渐进的、离散的、异质的的和不可预知的<ref>{{cite journal|title=The Promise of Dynamic Systems Approaches for an Integrated Account of Human Development|journal=Child Development|date=2000-02-25|first=Mark D.|last=Lewis|volume=71|issue=1|pages=36–43|id= |url=http://home.oise.utoronto.ca/~mlewis/Manuscripts/Promise.pdf|accessdate=2008-04-04|doi=10.1111/1467-8624.00116|pmid=10836556 |citeseerx=10.1.1.72.3668}}</ref>。
| + | 在学习的过程中,旧的模式被打破,学习者的思维达到了一种不平衡的状态。这是认知发展的阶段性转变。自组织随活动水平(Activity Levels)相互联系时产生。新形成的宏观和微观结构相互支持,加速了这一过程。这些联系在头脑中形成了一种有序的新状态结构,这个过程被称为“扇贝化(Scalloping)”,也就是头脑的复杂表现的不断累积和崩溃的过程。这种新的状态是渐进的、离散的、异质的的和不可预知的<ref>{{cite journal|title=The Promise of Dynamic Systems Approaches for an Integrated Account of Human Development|journal=Child Development|date=2000-02-25|first=Mark D.|last=Lewis|volume=71|issue=1|pages=36–43|id= |url=http://home.oise.utoronto.ca/~mlewis/Manuscripts/Promise.pdf|accessdate=2008-04-04|doi=10.1111/1467-8624.00116|pmid=10836556 |citeseerx=10.1.1.72.3668}}</ref>。 |
| | | |
| 动力系统理论最近还被用来解释儿童发展中一个长期没有答案的问题,即 A-not-B 错误<ref>{{cite journal|title=Development as a dynamic system|journal=Trends in Cognitive Sciences|date=2003-07-30|first=Linda B.|last=Smith|author2=Esther Thelen|volume=7|issue=8|pages=343–8|id= |url=http://www.indiana.edu/~cogdev/labwork/dynamicsystem.pdf|accessdate=2008-04-04|doi=10.1016/S1364-6613(03)00156-6|pmid=12907229|citeseerx=10.1.1.294.2037}}</ref>。 | | 动力系统理论最近还被用来解释儿童发展中一个长期没有答案的问题,即 A-not-B 错误<ref>{{cite journal|title=Development as a dynamic system|journal=Trends in Cognitive Sciences|date=2003-07-30|first=Linda B.|last=Smith|author2=Esther Thelen|volume=7|issue=8|pages=343–8|id= |url=http://www.indiana.edu/~cogdev/labwork/dynamicsystem.pdf|accessdate=2008-04-04|doi=10.1016/S1364-6613(03)00156-6|pmid=12907229|citeseerx=10.1.1.294.2037}}</ref>。 |
第150行: |
第150行: |
| * 德米特里·阿诺索夫Dmitri Anosov | | * 德米特里·阿诺索夫Dmitri Anosov |
| | | |
− | * 弗拉基米尔·阿诺德(Vladimir Arnold) | + | * 弗拉基米尔·阿诺德(Vladimir Arnold) |
| | | |
− | * 尼古拉(Nikolay Bogolyubov) | + | * 尼古拉(Nikolay Bogolyubov) |
| | | |
− | * 安德烈·柯尔莫哥洛夫(Andrey Kolmogorov) | + | * 安德烈·柯尔莫哥洛夫(Andrey Kolmogorov) |
| | | |
− | * Nikolay Mitrofanovich Krylov |尼古拉·克雷洛夫(Nikolay Krylov) | + | * Nikolay Mitrofanovich Krylov |尼古拉·克雷洛夫(Nikolay Krylov) |
| | | |
− | * 于尔根·摩泽(JürgenMoser) | + | * 于尔根·摩泽(JürgenMoser) |
| | | |
− | * 雅各布·G·西奈(Yakov G. Sinai) | + | * 雅各布·G·西奈(Yakov G. Sinai) |
| | | |
− | * 斯蒂芬·斯玛莱(Stephen Smale) | + | * 斯蒂芬·斯玛莱(Stephen Smale) |
| | | |
− | * 希勒尔·弗斯滕伯格(Hillel Furstenberg) | + | * 希勒尔·弗斯滕伯格(Hillel Furstenberg) |
| | | |
− | * 格里高里·马古利斯(Grigory Margulis) | + | * 格里高里·马古利斯(Grigory Margulis) |
| | | |
− | * 伊隆·林登斯特劳斯(Elon Lindenstrauss) | + | * 伊隆·林登斯特劳斯(Elon Lindenstrauss) |
| | | |
| {{div col end}} | | {{div col end}} |