更改

跳到导航 跳到搜索
删除1,974字节 、 2020年8月9日 (日) 10:14
第54行: 第54行:       −
{{Equation box 1
  −
|indent =
  −
|title=
  −
|equation =
  −
<math>
  −
I(X;Y) = D_{\mathrm{KL}}( P_{(X,Y)} \| P_{X} \otimes P_{Y} )
  −
</math>
  −
|cellpadding= 1
  −
|border
  −
|border colour = #0073CF
  −
|background colour=#F5FFFA}}
   
where <math>D_{\mathrm{KL}}</math> is the [[Kullback–Leibler divergence]].
 
where <math>D_{\mathrm{KL}}</math> is the [[Kullback–Leibler divergence]].
Notice, as per property of the [[Kullback–Leibler divergence]], that <math>I(X;Y)</math> is equal to zero precisely when the joint distribution coincides with the product of the marginals, i.e. when <math>X</math> and <math>Y</math> are independent (and hence observing <math>Y</math> tells you nothing about <math>X</math>). In general <math>I(X;Y)</math> is non-negative, it is a measure of the price for encoding <math>(X,Y)</math> as a pair of independent random variables, when in reality they are not.
      +
其中<math>D_{\mathrm{KL}}</math>表示Kullback-Leibler散度。
   −
{{Equation box 1
     −
{{Equation box 1
     −
{方程式方框1
+
Notice, as per property of the [[Kullback–Leibler divergence]], that <math>I(X;Y)</math> is equal to zero precisely when the joint distribution coincides with the product of the marginals, i.e. when <math>X</math> and <math>Y</math> are independent (and hence observing <math>Y</math> tells you nothing about <math>X</math>). In general <math>I(X;Y)</math> is non-negative, it is a measure of the price for encoding <math>(X,Y)</math> as a pair of independent random variables, when in reality they are not.
 
  −
|indent =
  −
 
  −
|indent =
  −
 
  −
不会有事的
  −
 
  −
|title=
  −
 
  −
|title=
  −
 
  −
标题
  −
 
  −
|equation =
  −
 
  −
|equation =
  −
 
  −
方程式
  −
 
  −
<math>
  −
 
  −
<math>
  −
 
  −
数学
  −
 
  −
I(X;Y) = D_{\mathrm{KL}}( P_{(X,Y)} \| P_{X} \otimes P_{Y} )
  −
 
  −
I(X;Y) = D_{\mathrm{KL}}( P_{(X,Y)} \| P_{X} \otimes P_{Y} )
  −
 
  −
I (x; y) d { mathrm { KL }(p {(x,y)} | p { x }乘 p { y })
  −
 
  −
</math>
  −
 
  −
</math>
  −
 
  −
数学
  −
 
  −
|cellpadding= 1
  −
 
  −
|cellpadding= 1
  −
 
  −
1号牢房
  −
 
  −
|border
  −
 
  −
|border
  −
 
  −
边界
  −
 
  −
|border colour = #0073CF
  −
 
  −
|border colour = #0073CF
  −
 
  −
0073CF
  −
 
  −
|background colour=#F5FFFA}}
  −
 
  −
|background colour=#F5FFFA}}
  −
 
  −
5 / fffa }
  −
 
  −
where <math>D_{\mathrm{KL}}</math> is the [[Kullback–Leibler divergence]].
  −
 
  −
where <math>D_{\mathrm{KL}}</math> is the Kullback–Leibler divergence.
  −
 
  −
其中数学 d (mathrm { KL } / math)是 Kullback-Leibler 分歧。
  −
 
  −
Notice, as per property of the [[Kullback–Leibler divergence]], that <math>I(X;Y)</math> is equal to zero precisely when the joint distribution coincides with the product of the marginals, i.e. when <math>X</math> and <math>Y</math> are independent (and hence observing <math>Y</math> tells your nothing about <math>X</math>). In general <math>I(X;Y)</math> is non-negative, it is a measure of the price for encoding <math>(X,Y)</math> as a pair of independent random variables, when in reality they are not.
  −
 
  −
Notice, as per property of the Kullback–Leibler divergence, that <math>I(X;Y)</math> is equal to zero precisely when the joint distribution coincides with the product of the marginals, i.e. when <math>X</math> and <math>Y</math> are independent (and hence observing <math>Y</math> tells your nothing about <math>X</math>). In general <math>I(X;Y)</math> is non-negative, it is a measure of the price for encoding <math>(X,Y)</math> as a pair of independent random variables, when in reality they are not.
     −
注意,根据 Kullback-Leibler 散度的性质,当联合分布与边际乘积重合时,math i (x; y) / math 恰好等于零,即。当数学 x / 数学和数学 y / 数学是独立的(因此观察数学 y / 数学并不能告诉你数学 x / 数学)。在一般的数学 i (x; y) / math 是非负的,它是一种测量方法,用于将 math (x,y) / math 作为一对独立的随机变量进行编码,而实际上它们并不是。
+
注意,根据 Kullback-Leibler 散度的性质,当联合分布与边际乘积重合时,<math>I(X;Y)</math> 恰好等于零,即。当数学 x / 数学和数学 y / 数学是独立的(因此观察数学 y / 数学并不能告诉你数学 x / 数学)。在一般的数学 i (x; y) / math 是非负的,它是一种测量方法,用于将 math (x,y) / math 作为一对独立的随机变量进行编码,而实际上它们并不是。
    
== 关于离散分布的PMF In terms of PMFs for discrete distributions ==
 
== 关于离散分布的PMF In terms of PMFs for discrete distributions ==
463

个编辑

导航菜单