第477行: |
第477行: |
| | | |
| {{Equation box 1 | | {{Equation box 1 |
− |
| |
− | {{Equation box 1
| |
− |
| |
− | {方程式方框1
| |
− |
| |
− | |indent =
| |
| | | |
| |indent = | | |indent = |
− |
| |
− | 不会有事的
| |
| | | |
| |title= | | |title= |
− |
| |
− | |title=
| |
− |
| |
− | 标题
| |
− |
| |
− | |equation =
| |
| | | |
| |equation = | | |equation = |
− |
| |
− | 方程式
| |
| | | |
| <math> | | <math> |
− |
| |
− | <math>
| |
− |
| |
− | 数学
| |
− |
| |
− | \operatorname{I}(X;Y|Z) = \mathbb{E}_Z [D_{\mathrm{KL}}( P_{(X,Y)|Z} \| P_{X|Z} \otimes P_{Y|Z} )]
| |
| | | |
| \operatorname{I}(X;Y|Z) = \mathbb{E}_Z [D_{\mathrm{KL}}( P_{(X,Y)|Z} \| P_{X|Z} \otimes P_{Y|Z} )] | | \operatorname{I}(X;Y|Z) = \mathbb{E}_Z [D_{\mathrm{KL}}( P_{(X,Y)|Z} \| P_{X|Z} \otimes P_{Y|Z} )] |
− |
| |
− | [操作数名{ i }(x; y | z) mathbb { e } z [ d {(x,y) | z } | p { x | z }乘以 p { y | z }]
| |
− |
| |
− | </math>
| |
| | | |
| </math> | | </math> |
− |
| |
− | 数学
| |
− |
| |
− | |cellpadding= 1
| |
| | | |
| |cellpadding= 1 | | |cellpadding= 1 |
− |
| |
− | 1号牢房
| |
| | | |
| |border | | |border |
− |
| |
− | |border
| |
− |
| |
− | 边界
| |
− |
| |
− | |border colour = #0073CF
| |
| | | |
| |border colour = #0073CF | | |border colour = #0073CF |
− |
| |
− | 0073CF
| |
− |
| |
− | |background colour=#F5FFFA}}
| |
| | | |
| |background colour=#F5FFFA}} | | |background colour=#F5FFFA}} |
− |
| |
− | 5 / fffa }
| |
− |
| |
| | | |
| | | |
第553行: |
第508行: |
| | | |
| :<math> | | :<math> |
− |
| |
− | <math>
| |
− |
| |
− | 数学
| |
− |
| |
− | \operatorname{I}(X;Y|Z) = \sum_{z\in \mathcal{Z}} \sum_{y\in \mathcal{Y}} \sum_{x\in \mathcal{X}}
| |
| | | |
| \operatorname{I}(X;Y|Z) = \sum_{z\in \mathcal{Z}} \sum_{y\in \mathcal{Y}} \sum_{x\in \mathcal{X}} | | \operatorname{I}(X;Y|Z) = \sum_{z\in \mathcal{Z}} \sum_{y\in \mathcal{Y}} \sum_{x\in \mathcal{X}} |
− |
| |
− | 运算符名称{ i }(x; y | z) sum { z } sum { y } in mathcal { y } sum { x }
| |
− |
| |
− | {p_Z(z)\, p_{X,Y|Z}(x,y|z)
| |
| | | |
| {p_Z(z)\, p_{X,Y|Z}(x,y|z) | | {p_Z(z)\, p_{X,Y|Z}(x,y|z) |
− |
| |
− | { p z (z) ,p { x,y | z }(x,y | z)
| |
− |
| |
− | \log\left[\frac{p_{X,Y|Z}(x,y|z)}{p_{X|Z}\,(x|z)p_{Y|Z}(y|z)}\right]},
| |
| | | |
| \log\left[\frac{p_{X,Y|Z}(x,y|z)}{p_{X|Z}\,(x|z)p_{Y|Z}(y|z)}\right]}, | | \log\left[\frac{p_{X,Y|Z}(x,y|z)}{p_{X|Z}\,(x|z)p_{Y|Z}(y|z)}\right]}, |
− |
| |
− | 向左[ frac { x,y | z }(x,y | z)}{ p { x | z } ,(x | z) p { y | z }(y | z)}右]} ,
| |
− |
| |
− | </math>
| |
| | | |
| </math> | | </math> |
− |
| |
− | 数学
| |
| | | |
| which can be simplified as | | which can be simplified as |
第589行: |
第524行: |
| | | |
| :<math> | | :<math> |
− |
| |
− | <math>
| |
− |
| |
− | 数学
| |
− |
| |
− | \operatorname{I}(X;Y|Z) = \sum_{z\in \mathcal{Z}} \sum_{y\in \mathcal{Y}} \sum_{x\in \mathcal{X}}
| |
| | | |
| \operatorname{I}(X;Y|Z) = \sum_{z\in \mathcal{Z}} \sum_{y\in \mathcal{Y}} \sum_{x\in \mathcal{X}} | | \operatorname{I}(X;Y|Z) = \sum_{z\in \mathcal{Z}} \sum_{y\in \mathcal{Y}} \sum_{x\in \mathcal{X}} |
− |
| |
− | 运算符名称{ i }(x; y | z) sum { z } sum { y } in mathcal { y } sum { x }
| |
− |
| |
− | p_{X,Y,Z}(x,y,z) \log \frac{p_{X,Y,Z}(x,y,z)p_{Z}(z)}{p_{X,Z}(x,z)p_{Y,Z}(y,z)}.
| |
| | | |
| p_{X,Y,Z}(x,y,z) \log \frac{p_{X,Y,Z}(x,y,z)p_{Z}(z)}{p_{X,Z}(x,z)p_{Y,Z}(y,z)}. | | p_{X,Y,Z}(x,y,z) \log \frac{p_{X,Y,Z}(x,y,z)p_{Z}(z)}{p_{X,Z}(x,z)p_{Y,Z}(y,z)}. |
− |
| |
− | P { x,y,z }(x,y,z) log frac { x,y,z }(x,y,z) p { z }(z)}(x,z) p { y,z }(y,z)}.
| |
− |
| |
− | </math>
| |
| | | |
| </math> | | </math> |
− |
| |
− | 数学
| |
− |
| |
− |
| |
| | | |
| | | |
第623行: |
第540行: |
| | | |
| :<math> | | :<math> |
− |
| |
− | <math>
| |
− |
| |
− | 数学
| |
− |
| |
− | \operatorname{I}(X;Y|Z) = \int_{\mathcal{Z}} \int_{\mathcal{Y}} \int_{\mathcal{X}}
| |
| | | |
| \operatorname{I}(X;Y|Z) = \int_{\mathcal{Z}} \int_{\mathcal{Y}} \int_{\mathcal{X}} | | \operatorname{I}(X;Y|Z) = \int_{\mathcal{Z}} \int_{\mathcal{Y}} \int_{\mathcal{X}} |
− |
| |
− | 运算符名称{ i }(x; y | z) int { mathcal { z } int { mathcal { y }{ x }
| |
− |
| |
− | {p_Z(z)\, p_{X,Y|Z}(x,y|z)
| |
| | | |
| {p_Z(z)\, p_{X,Y|Z}(x,y|z) | | {p_Z(z)\, p_{X,Y|Z}(x,y|z) |
− |
| |
− | { p z (z) ,p { x,y | z }(x,y | z)
| |
− |
| |
− | \log\left[\frac{p_{X,Y|Z}(x,y|z)}{p_{X|Z}\,(x|z)p_{Y|Z}(y|z)}\right]} dx dy dz,
| |
| | | |
| \log\left[\frac{p_{X,Y|Z}(x,y|z)}{p_{X|Z}\,(x|z)p_{Y|Z}(y|z)}\right]} dx dy dz, | | \log\left[\frac{p_{X,Y|Z}(x,y|z)}{p_{X|Z}\,(x|z)p_{Y|Z}(y|z)}\right]} dx dy dz, |
− |
| |
− | 向左[ frac { x,y | z }(x,y | z)}{ p { x | z } ,(x | z) p { y | z }(y | z)}右]} dx dy dz,
| |
− |
| |
− | </math>
| |
| | | |
| </math> | | </math> |
− |
| |
− | 数学
| |
| | | |
| which can be simplified as | | which can be simplified as |
第659行: |
第556行: |
| | | |
| :<math> | | :<math> |
− |
| |
− | <math>
| |
− |
| |
− | 数学
| |
− |
| |
− | \operatorname{I}(X;Y|Z) = \int_{\mathcal{Z}} \int_{\mathcal{Y}} \int_{\mathcal{X}}
| |
| | | |
| \operatorname{I}(X;Y|Z) = \int_{\mathcal{Z}} \int_{\mathcal{Y}} \int_{\mathcal{X}} | | \operatorname{I}(X;Y|Z) = \int_{\mathcal{Z}} \int_{\mathcal{Y}} \int_{\mathcal{X}} |
− |
| |
− | 运算符名称{ i }(x; y | z) int { mathcal { z } int { mathcal { y }{ x }
| |
− |
| |
− | p_{X,Y,Z}(x,y,z) \log \frac{p_{X,Y,Z}(x,y,z)p_{Z}(z)}{p_{X,Z}(x,z)p_{Y,Z}(y,z)} dx dy dz.
| |
| | | |
| p_{X,Y,Z}(x,y,z) \log \frac{p_{X,Y,Z}(x,y,z)p_{Z}(z)}{p_{X,Z}(x,z)p_{Y,Z}(y,z)} dx dy dz. | | p_{X,Y,Z}(x,y,z) \log \frac{p_{X,Y,Z}(x,y,z)p_{Z}(z)}{p_{X,Z}(x,z)p_{Y,Z}(y,z)} dx dy dz. |
− |
| |
− | P { x,y,z }(x,y,z) log frac { x,y,z }(x,y,z) p { z }(z)}(x,z) p { y,z }(y,z)} dx dy dz.
| |
− |
| |
− | </math>
| |
| | | |
| </math> | | </math> |
− |
| |
− | 数学
| |
− |
| |
− |
| |
| | | |
| | | |
第693行: |
第572行: |
| | | |
| :<math>\operatorname{I}(X;Y|Z) \ge 0</math> | | :<math>\operatorname{I}(X;Y|Z) \ge 0</math> |
− |
| |
− | <math>\operatorname{I}(X;Y|Z) \ge 0</math>
| |
− |
| |
− | { i }(x; y | z) ge 0 / math
| |
| | | |
| for discrete, jointly distributed random variables <math>X,Y,Z</math>. This result has been used as a basic building block for proving other [[inequalities in information theory]]. | | for discrete, jointly distributed random variables <math>X,Y,Z</math>. This result has been used as a basic building block for proving other [[inequalities in information theory]]. |
第703行: |
第578行: |
| | | |
| 为离散,联合分布的随机变量数学 x,y,z / math。这个结果已被用作证明信息论中其他不等式的基本构件。 | | 为离散,联合分布的随机变量数学 x,y,z / math。这个结果已被用作证明信息论中其他不等式的基本构件。 |
− |
| |
− |
| |
− |
| |
− |
| |
| | | |
| === 多元互信息 Multivariate mutual information === | | === 多元互信息 Multivariate mutual information === |