更改

跳到导航 跳到搜索
添加174字节 、 2020年8月10日 (一) 21:44
无编辑摘要
第15行: 第15行:  
The second law of thermodynamics states that the total entropy of an isolated system can never decrease over time, and is constant if and only if all processes are reversible. Isolated systems spontaneously evolve towards thermodynamic equilibrium, the state with maximum entropy.  
 
The second law of thermodynamics states that the total entropy of an isolated system can never decrease over time, and is constant if and only if all processes are reversible. Isolated systems spontaneously evolve towards thermodynamic equilibrium, the state with maximum entropy.  
   −
<font color="#FFD700">'''热力学第二定律 Second Law Of Thermodynamics'''</font>指出,'''孤立系统Isolated System'''的总熵永远不会随着时间而减少,且当且仅当所有过程都是可逆时,总熵才恒定。孤立系统自发地到达到热力学平衡状态,此时为熵最大的状态。
+
<font color="#FFD700">'''热力学第二定律 Second Law Of Thermodynamics'''</font>指出,<font color="#FFD700">'''孤立系统Isolated System'''</font>的总熵永远不会随着时间而减少,且当且仅当所有过程都是可逆时,总熵才恒定。孤立系统自发地到达到热力学平衡状态,此时为熵最大的状态。
 
         +
<font color="#FFD700"></font>
      第25行: 第25行:  
The total entropy of a system and its surroundings can remain constant in ideal cases where the system is in thermodynamic equilibrium, or is undergoing a (fictive) reversible process. In all processes that occur, including spontaneous processes, the total entropy of the system and its surroundings increases and the process is irreversible in the thermodynamic sense. The increase in entropy accounts for the irreversibility of natural processes, and the asymmetry between future and past.
 
The total entropy of a system and its surroundings can remain constant in ideal cases where the system is in thermodynamic equilibrium, or is undergoing a (fictive) reversible process. In all processes that occur, including spontaneous processes, the total entropy of the system and its surroundings increases and the process is irreversible in the thermodynamic sense. The increase in entropy accounts for the irreversibility of natural processes, and the asymmetry between future and past.
   −
系统及其周围环境的总熵在理想情况下可以保持不变,在这种情况下,系统处于热力学平衡状态,或者正在经历一个(<font color = 'red'><s>虚拟的</s></font><font color = 'blue'>假想的</font>)可逆过程。<font color = 'red'><s>在所有发生的</s></font><font color = 'blue'>所有</font>过程中,包括'''自发过程 Spontaneous Processes''',系统及其周围环境的总熵增加,这一过程在热力学意义上是不可逆的。熵的增加解释了自然过程的不可逆性,以及未来和过去之间的不对称性。
+
系统及其周围环境的总熵在理想情况下可以保持不变,在这种情况下,系统处于热力学平衡状态,或者正在经历一个(<font color = 'red'><s>虚拟的</s></font><font color = 'blue'>假想的</font>)可逆过程。<font color = 'red'><s>在所有发生的</s></font><font color = 'blue'>所有</font>过程中,包括<font color="#FFD700">'''自发过程 Spontaneous Processes'''</font>,系统及其周围环境的总熵增加,这一过程在热力学意义上是不可逆的。熵的增加解释了自然过程的不可逆性,以及未来和过去之间的不对称性。
      第45行: 第45行:  
The second law has been expressed in many ways. Its first formulation is credited to the French scientist Sadi Carnot, who in 1824 showed that there is an upper limit to the efficiency of conversion of heat to work in a heat engine. This aspect of the second law is also known as Carnot's rule or limit.
 
The second law has been expressed in many ways. Its first formulation is credited to the French scientist Sadi Carnot, who in 1824 showed that there is an upper limit to the efficiency of conversion of heat to work in a heat engine. This aspect of the second law is also known as Carnot's rule or limit.
   −
<font color = 'blue'>热力学第二定律可以使用多种方法表述。它的第一个公式归功于法国科学家'''卡诺Sadi Carnot''',卡诺在1824年证明了在热机中将热转化为功的效率有一个上限。第二定律的这个方面也被称为卡诺规则'''Carnot's Rule'''或'''卡诺限制Carnot's Limit'''。</font>
+
<font color = 'blue'>热力学第二定律可以使用多种方法表述。它的第一个公式归功于法国科学家<font color="#FFD700">'''卡诺Sadi Carnot'''</font>,卡诺在1824年证明了在热机中将热转化为功的效率有一个上限。第二定律的这个方面也被称为<font color="#FFD700">'''卡诺规则Carnot's Rule'''</font><font color="#FFD700">'''卡诺限制Carnot's Limit'''</font>。</font>
     
259

个编辑

导航菜单