第1行: |
第1行: |
− | 此词条暂由彩云小译翻译,未经人工整理和审校,带来阅读不便,请见谅。
| + | 已有由佳欣初步翻译 |
| | | |
| {{short description|Computational and mathematical modeling of complex biological systems}} | | {{short description|Computational and mathematical modeling of complex biological systems}} |
第15行: |
第15行: |
| Systems biology is the computational and mathematical analysis and modeling of complex biological systems. It is a biology-based interdisciplinary field of study that focuses on complex interactions within biological systems, using a holistic approach (holism instead of the more traditional reductionism) to biological research. When it is crossing the field of systems theory and the applied mathematics methods, it develops into the sub-branch of complex systems biology. | | Systems biology is the computational and mathematical analysis and modeling of complex biological systems. It is a biology-based interdisciplinary field of study that focuses on complex interactions within biological systems, using a holistic approach (holism instead of the more traditional reductionism) to biological research. When it is crossing the field of systems theory and the applied mathematics methods, it develops into the sub-branch of complex systems biology. |
| | | |
− | 系统生物学是对复杂生物系统进行计算、数学分析和建模的学科。它是一个以生物学为基础的跨学科研究领域,侧重于生物系统内复杂的相互作用,采用整体的方法(整体论而不是更传统的还原论)进行生物学研究。它跨越了系统论和应用数学方法的领域,发展成为复杂系统生物学的一个分支。
| + | <font color="#FF8000">系统生物学 Systems biology</font>是对复杂生物系统进行计算、数学分析和建模的学科。它是一个以生物学为基础的跨学科研究领域,侧重于生物系统内复杂的相互作用,采用整体的方法(<font color="#FF8000">整体论 holism</front>而不是更传统的<font color="#FF8000">还原论 reductionism</font>)进行生物学研究。它跨越了系统论和应用数学方法的领域,发展成为<font color="#FF8000">复杂系统生物学 complex systems biology</font>的一个分支。 |
| | | |
| | | |
第23行: |
第23行: |
| Particularly from year 2000 onwards, the concept has been used widely in biology in a variety of contexts. The Human Genome Project is an example of applied systems thinking in biology which has led to new, collaborative ways of working on problems in the biological field of genetics. One of the aims of systems biology is to model and discover emergent properties, properties of cells, tissues and organisms functioning as a system whose theoretical description is only possible using techniques of systems biology. | | Particularly from year 2000 onwards, the concept has been used widely in biology in a variety of contexts. The Human Genome Project is an example of applied systems thinking in biology which has led to new, collaborative ways of working on problems in the biological field of genetics. One of the aims of systems biology is to model and discover emergent properties, properties of cells, tissues and organisms functioning as a system whose theoretical description is only possible using techniques of systems biology. |
| | | |
− | 特别是从2000年起,这个概念在生物学中被广泛应用于各种场合。人类基因组计划是生物学中应用系统思维的一个例子,它导致了在遗传学这个生物学领域新的协作的工作方式。系统生物学的目标之一是模拟和发现细胞、组织和有机体作为一个系统运作的涌现特性,其理论描述只有使用系统生物学技术才有可能实现。
| + | 特别是从2000年起,这个概念在生物学中被广泛应用于各种场合。<font color="#FF8000">人类基因组计划 Human Genome Project</font>是生物学中应用系统思维的一个例子,它导致了在遗传学这个生物学领域新的协作的工作方式。系统生物学的目标之一是模拟和发现<font color="#FF8000">细胞 cells</font>、<font color="#FF8000">组织 tissues</font>和<font color="#FF8000">有机体 organisms</font>作为一个系统运作的涌现特性,其理论描述只有使用系统生物学技术才有可能实现。 |
| | | |
| | | |
| | | |
− | == Overview == | + | == Overview 概述== |
| | | |
| Systems biology can be considered from a number of different aspects. | | Systems biology can be considered from a number of different aspects. |
第65行: |
第65行: |
| As the application of dynamical systems theory to molecular biology. Indeed, the focus on the dynamics of the studied systems is the main conceptual difference between systems biology and bioinformatics. | | As the application of dynamical systems theory to molecular biology. Indeed, the focus on the dynamics of the studied systems is the main conceptual difference between systems biology and bioinformatics. |
| | | |
− | 系统生物学是动力系统理论在分子生物学中的应用。事实上,对所研究系统的动力学的关注是系统生物学和生物信息学之间的主要概念差异。
| + | 系统生物学是动力系统理论在<font color="#FF8000">分子生物学 molecular biology</font>中的应用。事实上,对所研究系统的动力学的关注是系统生物学和<font color="#FF8000">生物信息学 bioinformatics</font>之间的主要概念差异。 |
| | | |
| | | |
第83行: |
第83行: |
| 各种各样的观点说明了这样一个事实,即系统生物学指的是一系列周边重叠概念的集合,而不是一个单独界定清楚的领域。然而,随着系统生物学的教职和研究机构在全球范围内的激增,这个术语在2007年已经广泛流行和普及。 | | 各种各样的观点说明了这样一个事实,即系统生物学指的是一系列周边重叠概念的集合,而不是一个单独界定清楚的领域。然而,随着系统生物学的教职和研究机构在全球范围内的激增,这个术语在2007年已经广泛流行和普及。 |
| | | |
− | == History == | + | == History 历史== |
| | | |
| Systems biology finds its roots in{{Citation needed|date=May 2009}} the quantitative modeling of [[enzyme kinetics]], a discipline that flourished between 1900 and 1970, the mathematical modeling of [[population dynamics]], the simulations developed to study [[neurophysiology]], [[control theory]] and [[cybernetics]], and [[Synergetics (Haken)|synergetics]]. | | Systems biology finds its roots in{{Citation needed|date=May 2009}} the quantitative modeling of [[enzyme kinetics]], a discipline that flourished between 1900 and 1970, the mathematical modeling of [[population dynamics]], the simulations developed to study [[neurophysiology]], [[control theory]] and [[cybernetics]], and [[Synergetics (Haken)|synergetics]]. |
第89行: |
第89行: |
| Systems biology finds its roots in the quantitative modeling of enzyme kinetics, a discipline that flourished between 1900 and 1970, the mathematical modeling of population dynamics, the simulations developed to study neurophysiology, control theory and cybernetics, and synergetics. | | Systems biology finds its roots in the quantitative modeling of enzyme kinetics, a discipline that flourished between 1900 and 1970, the mathematical modeling of population dynamics, the simulations developed to study neurophysiology, control theory and cybernetics, and synergetics. |
| | | |
− | 系统生物学根植于酶动力学的定量模型(酶动力学在1900年到1970年间蓬勃发展)、种群动力学的数学模型、神经生理学模拟、控制理论和控制论以及协同学。
| + | 系统生物学根植于<font color="#FF8000">酶动力学 enzyme kinetics</font>的定量模型(酶动力学在1900年到1970年间蓬勃发展)、<font color="#FF8000">种群动力学 population dynamics</font>的数学模型、神经生理学模拟、控制理论和<font color="#FF8000">控制论 control theory</font>以及<font color="#FF8000">协同学 Synergetics</font>。 |
| | | |
| | | |
第97行: |
第97行: |
| One of the theorists who can be seen as one of the precursors of systems biology is Ludwig von Bertalanffy with his general systems theory. | | One of the theorists who can be seen as one of the precursors of systems biology is Ludwig von Bertalanffy with his general systems theory. |
| | | |
− | 理论家卡尔·路德维希·冯·贝塔郎非和他的一般系统论可以被看作是系统生物学先驱之一。
| + | 理论家卡尔·路德维希·冯·贝塔郎非和他的<font color="#FF8000">一般系统论 general systems theory</font>可以被看作是系统生物学先驱之一。 |
| | | |
| | | |
第177行: |
第177行: |
| 系统生物学发展的一个重要里程碑是国际性课题 Physiome。 | | 系统生物学发展的一个重要里程碑是国际性课题 Physiome。 |
| | | |
− | == Associated disciplines == | + | == Associated disciplines 相关领域== |
| | | |
| [[File:Signal transduction pathways.svg|280px|thumb|right|Overview of [[signal transduction]] pathways]] | | [[File:Signal transduction pathways.svg|280px|thumb|right|Overview of [[signal transduction]] pathways]] |
第213行: |
第213行: |
| Various technologies utilized to capture dynamic changes in mRNA, proteins, and post-translational modifications. Mechanobiology, forces and physical properties at all scales, their interplay with other regulatory mechanisms; biosemiotics, analysis of the system of sign relations of an organism or other biosystems; Physiomics, a systematic study of physiome in biology. | | Various technologies utilized to capture dynamic changes in mRNA, proteins, and post-translational modifications. Mechanobiology, forces and physical properties at all scales, their interplay with other regulatory mechanisms; biosemiotics, analysis of the system of sign relations of an organism or other biosystems; Physiomics, a systematic study of physiome in biology. |
| | | |
− | 有各种技术用于捕获mRNA、蛋白质的动态变化和翻译后修饰。生物力学,跨尺度的力学和物理性质,以及它们与其他调节机制的相互作用;生物符号学,分析有机体或其他生物系统的符号关系系统;生理组学,生物学中生理的系统研究。
| + | 有各种技术用于捕获mRNA、蛋白质的动态变化和翻译后修饰。<font color="#FF8000">生物力学 Mechanobiology</font>,跨尺度的力学和物理性质,以及它们与其他调节机制的相互作用;生物符号学,分析有机体或其他生物系统的符号关系系统;生理组学,生物学中生理的系统研究。 |
| | | |
| | | |
第221行: |
第221行: |
| Cancer systems biology is an example of the systems biology approach, which can be distinguished by the specific object of study (tumorigenesis and treatment of cancer). It works with the specific data (patient samples, high-throughput data with particular attention to characterizing cancer genome in patient tumour samples) and tools (immortalized cancer cell lines, mouse models of tumorigenesis, xenograft models, high-throughput sequencing methods, siRNA-based gene knocking down high-throughput screenings, computational modeling of the consequences of somatic mutations and genome instability). The long-term objective of the systems biology of cancer is ability to better diagnose cancer, classify it and better predict the outcome of a suggested treatment, which is a basis for personalized cancer medicine and virtual cancer patient in more distant prospective. Significant efforts in computational systems biology of cancer have been made in creating realistic multi-scale in silico models of various tumours.<ref name="byrne2010"> | | Cancer systems biology is an example of the systems biology approach, which can be distinguished by the specific object of study (tumorigenesis and treatment of cancer). It works with the specific data (patient samples, high-throughput data with particular attention to characterizing cancer genome in patient tumour samples) and tools (immortalized cancer cell lines, mouse models of tumorigenesis, xenograft models, high-throughput sequencing methods, siRNA-based gene knocking down high-throughput screenings, computational modeling of the consequences of somatic mutations and genome instability). The long-term objective of the systems biology of cancer is ability to better diagnose cancer, classify it and better predict the outcome of a suggested treatment, which is a basis for personalized cancer medicine and virtual cancer patient in more distant prospective. Significant efforts in computational systems biology of cancer have been made in creating realistic multi-scale in silico models of various tumours.<ref name="byrne2010"> |
| | | |
− | 癌症系统生物学是系统生物学研究的一个例子,它可以通过特定的研究对象(肿瘤发生和癌症治疗)来区分。它使用特定的数据(患者样本、高通量数据,特别注意在患者肿瘤样本中描述癌症基因组)和工具(永生化癌细胞系、肿瘤发生的小鼠模型、异种移植模型、高通量测序方法、基于siRNA的基因敲除高通量筛选、体细胞突变后果的计算模型和基因不稳定性)。癌症系统生物学的长期目标是能够更好地诊断癌症,对癌症进行分类,并更好地预测建议的治疗结果,这是个性化癌症医学和虚拟癌症患者在更远的前景的基础。在癌症的计算系统生物学方面已经做出了重大的努力,在各种肿瘤的计算机模型中创造了真实的多尺度。< ref name ="byrne 2010">
| + | <font color="#FF8000">癌症系统生物学 Cancer systems biology</font>是系统生物学研究的一个例子,它可以通过特定的研究对象(肿瘤发生和癌症治疗)来区分。它使用特定的数据(患者样本、高通量数据,特别注意在患者肿瘤样本中描述癌症基因组)和工具(永生化癌细胞系、肿瘤发生的小鼠模型、异种移植模型、高通量测序方法、基于siRNA的基因敲除高通量筛选、体细胞突变后果的计算模型和基因不稳定性)。癌症系统生物学的长期目标是能够更好地诊断癌症,对癌症进行分类,并更好地预测建议的治疗结果,这是个性化癌症医学和虚拟癌症患者在更远的前景的基础。在癌症的计算系统生物学方面已经做出了重大的努力,在各种肿瘤的计算机模型中创造了真实的多尺度。< ref name ="byrne 2010"> |
| | | |
| {{cite journal|last1=Byrne|first1=Helen M. |authorlink1=Helen Byrne | | {{cite journal|last1=Byrne|first1=Helen M. |authorlink1=Helen Byrne |
第251行: |
第251行: |
| 系统生物学方法经常涉及机制模型的发展,比如从动态系统的基本构件的定量特性重建动态系统。例如,一个细胞网络可以进行数学建模,使用的方法来自化学动力学和控制理论。由于细胞网络中参数、变量和约束的数量庞大,经常使用数值和计算技术(例如流平衡分析)。 | | 系统生物学方法经常涉及机制模型的发展,比如从动态系统的基本构件的定量特性重建动态系统。例如,一个细胞网络可以进行数学建模,使用的方法来自化学动力学和控制理论。由于细胞网络中参数、变量和约束的数量庞大,经常使用数值和计算技术(例如流平衡分析)。 |
| | | |
− | == Bioinformatics and data analysis == | + | == Bioinformatics and data analysis 生物信息学和数据分析== |
| | | |
| Other aspects of computer science, [[informatics]], and statistics are also used in systems biology. These include new forms of computational models, such as the use of [[process calculi]] to model biological processes (notable approaches include stochastic [[π-calculus]], BioAmbients, Beta Binders, BioPEPA, and Brane calculus) and [[constraint programming|constraint]]-based modeling; integration of information from the literature, using techniques of [[information extraction]] and [[text mining]];<ref>{{cite journal|last1=Ananadou|first1=Sophia|author1-link=Sophia Ananiadou|last2=Kell|first2=Douglas|last3=Tsujii|first3=Jun-ichi|title=Text mining and its potential applications in systems biology|journal=Trends in Biotechnology|volume=24|issue=12|pages=571–579|date=December 2006|doi=10.1016/j.tibtech.2006.10.002|pmid=17045684 }}</ref> development of online databases and repositories for sharing data and models, approaches to database integration and software interoperability via [[loose coupling]] of software, websites and databases, or commercial suits; network-based approaches for analyzing high dimensional genomic data sets. For example, [[weighted correlation network analysis]] is often used for identifying clusters (referred to as modules), modeling the relationship between clusters, calculating fuzzy measures of cluster (module) membership, identifying intramodular hubs, and for studying cluster preservation in other data sets; pathway-based methods for omics data analysis, e.g. approaches to identify and score pathways with differential activity of their gene, protein, or metabolite members.<ref name="pathvar2012">{{cite journal|last1=Glaab|first1=Enrico|last2=Schneider|first2=Reinhard|title=PathVar: analysis of gene and protein expression variance in cellular pathways using microarray data|volume=28|issue=3|pages=446–447|journal=Bioinformatics|doi=10.1093/bioinformatics/btr656|pmid=22123829|pmc=3268235|year=2012 }}</ref> Much of the analysis of genomic data sets also include identifying correlations. Additionally, as much of the information comes from different fields, the development of syntactically and semantically sound ways of representing biological models is needed.<ref>{{Cite journal|last=Bardini|first=R.|last2=Politano|first2=G.|last3=Benso|first3=A.|last4=Di Carlo|first4=S.|date=2017-01-01|title=Multi-level and hybrid modelling approaches for systems biology|journal=Computational and Structural Biotechnology Journal|volume=15|pages=396–402|doi=10.1016/j.csbj.2017.07.005|issn=2001-0370|pmc=5565741|pmid=28855977}}</ref> | | Other aspects of computer science, [[informatics]], and statistics are also used in systems biology. These include new forms of computational models, such as the use of [[process calculi]] to model biological processes (notable approaches include stochastic [[π-calculus]], BioAmbients, Beta Binders, BioPEPA, and Brane calculus) and [[constraint programming|constraint]]-based modeling; integration of information from the literature, using techniques of [[information extraction]] and [[text mining]];<ref>{{cite journal|last1=Ananadou|first1=Sophia|author1-link=Sophia Ananiadou|last2=Kell|first2=Douglas|last3=Tsujii|first3=Jun-ichi|title=Text mining and its potential applications in systems biology|journal=Trends in Biotechnology|volume=24|issue=12|pages=571–579|date=December 2006|doi=10.1016/j.tibtech.2006.10.002|pmid=17045684 }}</ref> development of online databases and repositories for sharing data and models, approaches to database integration and software interoperability via [[loose coupling]] of software, websites and databases, or commercial suits; network-based approaches for analyzing high dimensional genomic data sets. For example, [[weighted correlation network analysis]] is often used for identifying clusters (referred to as modules), modeling the relationship between clusters, calculating fuzzy measures of cluster (module) membership, identifying intramodular hubs, and for studying cluster preservation in other data sets; pathway-based methods for omics data analysis, e.g. approaches to identify and score pathways with differential activity of their gene, protein, or metabolite members.<ref name="pathvar2012">{{cite journal|last1=Glaab|first1=Enrico|last2=Schneider|first2=Reinhard|title=PathVar: analysis of gene and protein expression variance in cellular pathways using microarray data|volume=28|issue=3|pages=446–447|journal=Bioinformatics|doi=10.1093/bioinformatics/btr656|pmid=22123829|pmc=3268235|year=2012 }}</ref> Much of the analysis of genomic data sets also include identifying correlations. Additionally, as much of the information comes from different fields, the development of syntactically and semantically sound ways of representing biological models is needed.<ref>{{Cite journal|last=Bardini|first=R.|last2=Politano|first2=G.|last3=Benso|first3=A.|last4=Di Carlo|first4=S.|date=2017-01-01|title=Multi-level and hybrid modelling approaches for systems biology|journal=Computational and Structural Biotechnology Journal|volume=15|pages=396–402|doi=10.1016/j.csbj.2017.07.005|issn=2001-0370|pmc=5565741|pmid=28855977}}</ref> |
第259行: |
第259行: |
| 计算机科学、信息学和统计学的其他方面也用于系统生物学。包括新形式的计算模型,如使用过程计算模拟生物过程(著名的方法包括随机演算,BioAmbients,Beta Binders,BioPEPA 和 Brane 演算)和基于约束的建模; 使用信息提取和文本挖掘技术,综合来自文献的信息;开发在线数据库和存储库共享数据和模型,数据库集成方法和软件互操作性,通过松散耦合的软件,网站和数据库,或商业诉讼; 基于网络的方法分析高维基因组数据集。例如,加权相关网络分析常常用于识别集群(称为模块)、建立集群之间的关系模型、计算集群(模块)成员的模糊度量、识别模块内中心成员,以及利用其他数据集研究集群保存; 基于通路的组学数据分析方法,例如识别和评价不同活性的基因、蛋白质或代谢物通路的方法。许多基因组数据集的分析也包括确定相关性。此外,由于大量的信息来自不同的领域,发展生物模型的语法和语义健全的表示方法是必要的。 | | 计算机科学、信息学和统计学的其他方面也用于系统生物学。包括新形式的计算模型,如使用过程计算模拟生物过程(著名的方法包括随机演算,BioAmbients,Beta Binders,BioPEPA 和 Brane 演算)和基于约束的建模; 使用信息提取和文本挖掘技术,综合来自文献的信息;开发在线数据库和存储库共享数据和模型,数据库集成方法和软件互操作性,通过松散耦合的软件,网站和数据库,或商业诉讼; 基于网络的方法分析高维基因组数据集。例如,加权相关网络分析常常用于识别集群(称为模块)、建立集群之间的关系模型、计算集群(模块)成员的模糊度量、识别模块内中心成员,以及利用其他数据集研究集群保存; 基于通路的组学数据分析方法,例如识别和评价不同活性的基因、蛋白质或代谢物通路的方法。许多基因组数据集的分析也包括确定相关性。此外,由于大量的信息来自不同的领域,发展生物模型的语法和语义健全的表示方法是必要的。 |
| | | |
− | == Creating biological models == | + | == Creating biological models 建立生物学模型== |
| | | |
| [[File:Toy_Biological_Model.jpg|thumb|326x326px|A simple three protein negative feedback loop modeled with mass action kinetic differential equations. Each protein interaction is described by a Michealis Menten reaction.<ref name=":03">{{Cite journal|last=Transtrum|first=Mark K.|last2=Qiu|first2=Peng|date=2016-05-17|title=Bridging Mechanistic and Phenomenological Models of Complex Biological Systems|journal=PLOS Computational Biology|volume=12|issue=5|pages=e1004915|doi=10.1371/journal.pcbi.1004915|pmid=27187545|pmc=4871498|arxiv=1509.06278|bibcode=2016PLSCB..12E4915T|issn=1553-7358}}</ref>]] | | [[File:Toy_Biological_Model.jpg|thumb|326x326px|A simple three protein negative feedback loop modeled with mass action kinetic differential equations. Each protein interaction is described by a Michealis Menten reaction.<ref name=":03">{{Cite journal|last=Transtrum|first=Mark K.|last2=Qiu|first2=Peng|date=2016-05-17|title=Bridging Mechanistic and Phenomenological Models of Complex Biological Systems|journal=PLOS Computational Biology|volume=12|issue=5|pages=e1004915|doi=10.1371/journal.pcbi.1004915|pmid=27187545|pmc=4871498|arxiv=1509.06278|bibcode=2016PLSCB..12E4915T|issn=1553-7358}}</ref>]] |
第279行: |
第279行: |
| 简单的三种蛋白质负反馈回路的浓度-时间图。对于初始条件,所有参数设置为0或1。反应持续进行,直到达到平衡。这张图是每种蛋白质随时间的变化。 | | 简单的三种蛋白质负反馈回路的浓度-时间图。对于初始条件,所有参数设置为0或1。反应持续进行,直到达到平衡。这张图是每种蛋白质随时间的变化。 |
| | | |
− | == See also == | + | == See also 另外可见== |
| | | |
| {{Portal|Systems science|Biology|Evolutionary biology}} | | {{Portal|Systems science|Biology|Evolutionary biology}} |
第312行: |
第312行: |
| | | |
| * [[Systems immunology]] | | * [[Systems immunology]] |
| + | |
| + | {{div col end}} |
| + | |
| + | {{div col}} |
| + | |
| + | * [[生物计算]] |
| + | |
| + | * [[计算生物学]] |
| + | |
| + | * [[暴露组]] |
| + | |
| + | * [[相互作用组]] |
| + | |
| + | * [[生物学中组学主题列表]] |
| + | |
| + | * [[代谢网络建模]] |
| + | |
| + | * [[生物系统建模]] |
| + | |
| + | * [[分子病理流行病学]] |
| + | |
| + | * [[网络生物学]] |
| + | |
| + | * [[网络医学]] |
| + | |
| + | * {{annotated link|Noogenesis}} |
| + | |
| + | * [[合成生物学]] |
| + | |
| + | * [[系统生物医学]] |
| + | |
| + | * [[系统免疫学]] |
| | | |
| {{div col end}} | | {{div col end}} |