第15行: |
第15行: |
| The second law of thermodynamics states that the total entropy of an isolated system can never decrease over time, and is constant if and only if all processes are reversible. Isolated systems spontaneously evolve towards thermodynamic equilibrium, the state with maximum entropy. | | The second law of thermodynamics states that the total entropy of an isolated system can never decrease over time, and is constant if and only if all processes are reversible. Isolated systems spontaneously evolve towards thermodynamic equilibrium, the state with maximum entropy. |
| | | |
− | <font color="#FFD700">'''热力学第二定律 Second Law Of Thermodynamics'''</font>指出,<font color="#FFD700">'''孤立系统Isolated System'''</font>的总熵永远不会随着时间而减少,且当且仅当所有过程都是可逆时,总熵才恒定。孤立系统自发地到达到热力学平衡状态,此时为熵最大的状态。 | + | <font color="#ff8000">'''热力学第二定律 Second Law Of Thermodynamics'''</font>指出,<font color="#ff8000">'''孤立系统Isolated System'''</font>的总熵永远不会随着时间而减少,且当且仅当所有过程都是可逆时,总熵才恒定。孤立系统自发地到达到热力学平衡状态,此时为熵最大的状态。 |
| | | |
| | | |
− | <font color="#FFD700"></font> | + | <font color="#ff8000"></font> |
| | | |
| | | |
第25行: |
第25行: |
| The total entropy of a system and its surroundings can remain constant in ideal cases where the system is in thermodynamic equilibrium, or is undergoing a (fictive) reversible process. In all processes that occur, including spontaneous processes, the total entropy of the system and its surroundings increases and the process is irreversible in the thermodynamic sense. The increase in entropy accounts for the irreversibility of natural processes, and the asymmetry between future and past. | | The total entropy of a system and its surroundings can remain constant in ideal cases where the system is in thermodynamic equilibrium, or is undergoing a (fictive) reversible process. In all processes that occur, including spontaneous processes, the total entropy of the system and its surroundings increases and the process is irreversible in the thermodynamic sense. The increase in entropy accounts for the irreversibility of natural processes, and the asymmetry between future and past. |
| | | |
− | 系统及其周围环境的总熵在理想情况下可以保持不变,在这种情况下,系统处于热力学平衡状态,或者正在经历一个(<font color = 'red'><s>虚拟的</s></font><font color = 'blue'>假想的</font>)可逆过程。<font color = 'red'><s>在所有发生的</s></font><font color = 'blue'>所有</font>过程中,包括<font color="#FFD700">'''自发过程 Spontaneous Processes'''</font>,系统及其周围环境的总熵增加,这一过程在热力学意义上是不可逆的。熵的增加解释了自然过程的不可逆性,以及未来和过去之间的不对称性。 | + | 系统及其周围环境的总熵在理想情况下可以保持不变,在这种情况下,系统处于热力学平衡状态,或者正在经历一个(<font color = 'red'><s>虚拟的</s></font><font color = 'blue'>假想的</font>)可逆过程。<font color = 'red'><s>在所有发生的</s></font><font color = 'blue'>所有</font>过程中,包括<font color="#ff8000">'''自发过程 Spontaneous Processes'''</font>,系统及其周围环境的总熵增加,这一过程在热力学意义上是不可逆的。熵的增加解释了自然过程的不可逆性,以及未来和过去之间的不对称性。 |
| | | |
| | | |
第45行: |
第45行: |
| The second law has been expressed in many ways. Its first formulation is credited to the French scientist Sadi Carnot, who in 1824 showed that there is an upper limit to the efficiency of conversion of heat to work in a heat engine. This aspect of the second law is also known as Carnot's rule or limit. | | The second law has been expressed in many ways. Its first formulation is credited to the French scientist Sadi Carnot, who in 1824 showed that there is an upper limit to the efficiency of conversion of heat to work in a heat engine. This aspect of the second law is also known as Carnot's rule or limit. |
| | | |
− | <font color = 'blue'>热力学第二定律可以使用多种方法表述。它的第一个公式归功于法国科学家<font color="#FFD700">'''卡诺Sadi Carnot'''</font>,卡诺在1824年证明了在热机中将热转化为功的效率有一个上限。第二定律的这个方面也被称为<font color="#FFD700">'''卡诺规则Carnot's Rule'''</font>或<font color="#FFD700">'''卡诺限制Carnot's Limit'''</font>。</font> | + | <font color = 'blue'>热力学第二定律可以使用多种方法表述。它的第一个公式归功于法国科学家<font color="#ff8000">'''卡诺Sadi Carnot'''</font>,卡诺在1824年证明了在热机中将热转化为功的效率有一个上限。第二定律的这个方面也被称为<font color="#ff8000">'''卡诺规则Carnot's Rule'''</font>或<font color="#ff8000">'''卡诺限制Carnot's Limit'''</font>。</font> |
| | | |
| | | |
第750行: |
第750行: |
| Now consider the case where <math>T_1</math> is a fixed reference temperature: the temperature of the triple point of water. Then for any T<sub>2</sub> and T<sub>3</sub>, | | Now consider the case where <math>T_1</math> is a fixed reference temperature: the temperature of the triple point of water. Then for any T<sub>2</sub> and T<sub>3</sub>, |
| | | |
− | 现在考虑如下情形,<math>T_1</math> 是一个固定的参考温度: 水的<font color="#FFD700">'''三相点 Triple Point'''</font>的温度。则对于任意 T<sub>2</sub> 和 T<sub>3</sub>, | + | 现在考虑如下情形,<math>T_1</math> 是一个固定的参考温度: 水的<font color="#ff8000">'''三相点 Triple Point'''</font>的温度。则对于任意 T<sub>2</sub> 和 T<sub>3</sub>, |
| | | |
| | | |
第853行: |
第853行: |
| With this we can only obtain the difference of entropy by integrating the above formula. To obtain the absolute value, we need the third law of thermodynamics, which states that S = 0 at absolute zero for perfect crystals. | | With this we can only obtain the difference of entropy by integrating the above formula. To obtain the absolute value, we need the third law of thermodynamics, which states that S = 0 at absolute zero for perfect crystals. |
| | | |
− | 据此,只有对上述公式进行积分,才能得到熵的差值。为了获得绝对值,我们需要<font color="#FFD700">'''热力学第三定律 Third Law of Thermodynamics'''</font>,它指出<font color="#FFD700">'''绝对零度 Absolute Zero'''</font>下完美晶体的 ''S'' = 0。 | + | 据此,只有对上述公式进行积分,才能得到熵的差值。为了获得绝对值,我们需要<font color="#ff8000">'''热力学第三定律 Third Law of Thermodynamics'''</font>,它指出<font color="#ff8000">'''绝对零度 Absolute Zero'''</font>下完美晶体的 ''S'' = 0。 |
| | | |
| | | |
第915行: |
第915行: |
| Notice that if the process is an adiabatic process, then <math>\delta Q=0</math>, so <math>\Delta S\ge 0</math>. | | Notice that if the process is an adiabatic process, then <math>\delta Q=0</math>, so <math>\Delta S\ge 0</math>. |
| | | |
− | 注意,若该过程是一个<font color="#FFD700">'''绝热过程 Adiabatic Process'''</font>,则<math>\delta Q=0</math>,故<math>\Delta S\ge 0</math>。 | + | 注意,若该过程是一个<font color="#ff8000">'''绝热过程 Adiabatic Process'''</font>,则<math>\delta Q=0</math>,故<math>\Delta S\ge 0</math>。 |
| | | |
| ===Energy, available useful work=== | | ===Energy, available useful work=== |
第980行: |
第980行: |
| where μ<sub>iR</sub> are the chemical potentials of chemical species in the external surroundings. | | where μ<sub>iR</sub> are the chemical potentials of chemical species in the external surroundings. |
| | | |
− | 其中μ<sub>iR</sub>是外部环境中<font color = 'red'><s>化学物类</s></font><font color = '#FFD700'>'''化学形态 chemical species'''</font>的化学势。 | + | 其中μ<sub>iR</sub>是外部环境中<font color = 'red'><s>化学物类</s></font><font color = '#ff8000'>'''化学形态 chemical species'''</font>的化学势。 |
| | | |
| | | |