Intuitively, if entropy 𝐻(𝑌) is regarded as a measure of uncertainty about a random variable, then 𝐻(𝑌|𝑋) is a measure of what 𝑋 does not say about 𝑌. This is "the amount of uncertainty remaining about 𝑌 after 𝑋 is known", and thus the right side of the second of these equalities can be read as "the amount of uncertainty in 𝑌, minus the amount of uncertainty in 𝑌 which remains after 𝑋 is known", which is equivalent to "the amount of uncertainty in 𝑌 which is removed by knowing 𝑋". This corroborates the intuitive meaning of mutual information as the amount of information (that is, reduction in uncertainty) that knowing either variable provides about the other. | Intuitively, if entropy 𝐻(𝑌) is regarded as a measure of uncertainty about a random variable, then 𝐻(𝑌|𝑋) is a measure of what 𝑋 does not say about 𝑌. This is "the amount of uncertainty remaining about 𝑌 after 𝑋 is known", and thus the right side of the second of these equalities can be read as "the amount of uncertainty in 𝑌, minus the amount of uncertainty in 𝑌 which remains after 𝑋 is known", which is equivalent to "the amount of uncertainty in 𝑌 which is removed by knowing 𝑋". This corroborates the intuitive meaning of mutual information as the amount of information (that is, reduction in uncertainty) that knowing either variable provides about the other. |