更改

跳到导航 跳到搜索
第446行: 第446行:  
2D partitioning: Every processor gets a submatrix of the adjacency matrix. Assume the processors are aligned in a rectangle <math>p = p_r \times p_c</math>, where <math>p_r
 
2D partitioning: Every processor gets a submatrix of the adjacency matrix. Assume the processors are aligned in a rectangle <math>p = p_r \times p_c</math>, where <math>p_r
   −
2 d 分区: 每个处理器都有一个邻接矩阵的子矩阵。假设处理器在一个矩形 <math> p = p _ r 乘以 p _ c </math> 中对齐,其中 < math > p _ r
+
2 d 分区: 每个处理器都有一个邻接矩阵的子矩阵。假设处理器在一个矩形 <math> p = p_r 乘以 p_c </math> 中对齐,其中 <math> p_r
   −
</math> and <math>p_c
+
</math>and<math>p_c
   −
</math> and <math>p_c
+
</math>and<math>p_c
    
[/math ]和[ math ]
 
[/math ]和[ math ]
第458行: 第458行:  
</math> are the amount of processing elements in each row and column, respectively. Then each processor gets a submatrix of the adjacency matrix of dimension <math>(n/p_r)\times(n/p_c)</math>. This can be visualized as a checkerboard pattern in a matrix. Therefore, each processing unit can only have outgoing edges to PEs in the same row and column. This bounds the amount of communication partners for each PE to <math>p_r + p_c - 1</math> out of <math>p = p_r \times p_c</math> possible ones.
 
</math> are the amount of processing elements in each row and column, respectively. Then each processor gets a submatrix of the adjacency matrix of dimension <math>(n/p_r)\times(n/p_c)</math>. This can be visualized as a checkerboard pattern in a matrix. Therefore, each processing unit can only have outgoing edges to PEs in the same row and column. This bounds the amount of communication partners for each PE to <math>p_r + p_c - 1</math> out of <math>p = p_r \times p_c</math> possible ones.
   −
</math > 是每行和每列中处理元素的数量。然后每个处理器得到维数 < math > (n/p _ r)乘以(n/p _ c) </math > 的邻接矩阵矩阵。这可以可视化为矩阵中的棋盘格模式。因此,每个处理单元只能在同一行和列中具有 pe 的外出边。这将每个 PE 的通信伙伴的数量限制为 < math > p _ r + p _ c-1 </math > 出 < math > p = p _ r 乘以 p _ c </math > 可能的伙伴。
+
</math > 是每行和每列中处理元素的数量。然后每个处理器得到维数 <math> (n/p_r)乘以(n/p_c)</math> 的邻接矩阵。这可以可视化为矩阵中的棋盘格模式。因此,每个处理单元只能在同一行和列中具有 PE 的外出边。这将每个 PE 的通信伙伴的数量限制为 <math> p_r + p_c-1 </math> 出 <math> p = p_r 乘以 p_c </math> 可能的伙伴。
    
==See also==
 
==See also==
274

个编辑

导航菜单