更改

跳到导航 跳到搜索
添加321字节 、 2020年8月19日 (三) 11:40
第704行: 第704行:  
Normalized variants of the mutual information are provided by the coefficients of constraint, uncertainty coefficient or proficiency:
 
Normalized variants of the mutual information are provided by the coefficients of constraint, uncertainty coefficient or proficiency:
   −
互信息的规范化变量由约束系数、不确定系数或熟练程度提供:  
+
互信息的规范化变量由约束系数、不确定系数或熟练程度组成:  
    
:<math>
 
:<math>
第710行: 第710行:  
C_{XY} = \frac{\operatorname{I}(X;Y)}{H(Y)}
 
C_{XY} = \frac{\operatorname{I}(X;Y)}{H(Y)}
   −
~~~~\mbox{and}~~~~  
+
~~~~\mbox{}~~~~  
    
C_{YX} = \frac{\operatorname{I}(X;Y)}{H(X)}.
 
C_{YX} = \frac{\operatorname{I}(X;Y)}{H(X)}.
第722行: 第722行:  
The two coefficients have a value ranging in [0, 1], but are not necessarily equal. In some cases a symmetric measure may be desired, such as the following redundancy measure:
 
The two coefficients have a value ranging in [0, 1], but are not necessarily equal. In some cases a symmetric measure may be desired, such as the following redundancy measure:
   −
这两个系数的值范围为[0,1] ,但不一定相等。在某些情况下,可能需要一个对称的度量,例如下面的冗余度量:
+
这两个系数的值范围均为[0,1],但不一定是相等的。在某些情况下,可能需要一个对称的度量,例如下面的冗余度量:
    
:<math>R = \frac{\operatorname{I}(X;Y)}{H(X) + H(Y)}</math>
 
:<math>R = \frac{\operatorname{I}(X;Y)}{H(X) + H(Y)}</math>
第733行: 第733行:  
which attains a minimum of zero when the variables are independent and a maximum value of
 
which attains a minimum of zero when the variables are independent and a maximum value of
   −
当变量是独立的时候,它达到最小值为零,最大值为
+
当变量是独立的时候,它的最小值为零,最大值可以达到:
      第755行: 第755行:  
Another symmetrical measure is the symmetric uncertainty , given by
 
Another symmetrical measure is the symmetric uncertainty , given by
   −
另一个对称度量是对称不确定度,由
+
另一个对称度量是对称不确定度,由下式表示:
      第778行: 第778行:  
If we consider mutual information as a special case of the total correlation or dual total correlation, the normalized version are respectively,
 
If we consider mutual information as a special case of the total correlation or dual total correlation, the normalized version are respectively,
   −
如果我们把互信息看作是总相关或对偶总相关的特殊情况,归一化版本分别为,
+
如果我们把互信息看作是'''<font color="#ff8000">总相关 Total correlation</font>'''或'''<font color="#ff8000">对偶总相关 Dual total correlation</font>'''的特殊情况,则其标准化版本分别为,
    
:<math>\frac{\operatorname{I}(X;Y)}{\min\left[ H(X),H(Y)\right]}</math> and <math>\frac{\operatorname{I}(X;Y)}{H(X,Y)} \; .</math>
 
:<math>\frac{\operatorname{I}(X;Y)}{\min\left[ H(X),H(Y)\right]}</math> and <math>\frac{\operatorname{I}(X;Y)}{H(X,Y)} \; .</math>
第788行: 第788行:     
This normalized version also known as Information Quality Ratio (IQR) which quantifies the amount of information of a variable based on another variable against total uncertainty:
 
This normalized version also known as Information Quality Ratio (IQR) which quantifies the amount of information of a variable based on another variable against total uncertainty:
这个标准化版本也被称为信息质量比率(IQR) ,它根据另一个变量量化了一个变量的信息量,以对抗总的不确定性:  
+
这个标准化版本也被称为'''<font color="#ff8000">信息质量比率 Information Quality Ratio,IQR</font>''' ,它根据另一个变量量化了一个变量的信息量,来对抗总的不确定性:  
    
:<math>IQR(X, Y) = \operatorname{E}[\operatorname{I}(X;Y)]  
 
:<math>IQR(X, Y) = \operatorname{E}[\operatorname{I}(X;Y)]  
第805行: 第805行:  
There's a normalization which derives from first thinking of mutual information as an analogue to [[covariance]] (thus [[Entropy (information theory)|Shannon entropy]] is analogous to [[variance]]).  Then the normalized mutual information is calculated akin to the [[Pearson product-moment correlation coefficient|Pearson correlation coefficient]],
 
There's a normalization which derives from first thinking of mutual information as an analogue to [[covariance]] (thus [[Entropy (information theory)|Shannon entropy]] is analogous to [[variance]]).  Then the normalized mutual information is calculated akin to the [[Pearson product-moment correlation coefficient|Pearson correlation coefficient]],
   −
有一个标准化的名字——它起源于最初把互信息看作是协方差的类比(因此香农熵类似于方差)。然后计算归一化互信息类似于皮尔逊相关系数,
+
有一个标准化的名字——它起源于最初把互信息看作是'''<font color="#ff8000">协方差 Covariance</font>'''的类比(因此香农熵类似于方差)。然后计算归一化互信息类似于'''<font color="#ff8000">皮尔森相关系数 Pearson product-moment</font>''':
     
463

个编辑

导航菜单