更改

跳到导航 跳到搜索
添加467字节 、 2020年8月21日 (五) 21:05
第82行: 第82行:  
The shortest such program implies the uncompressed stored variable more-likely causes the computed variable.<ref>Kailash Budhathoki and Jilles Vreeken "[http://eda.mmci.uni-saarland.de/pubs/2016/origo-budhathoki,vreeken.pdf Causal Inference by Compression]" 2016 IEEE 16th International Conference on Data Mining (ICDM)</ref><ref>{{Cite journal |doi = 10.1007/s10115-018-1286-7|title = Telling cause from effect by local and global regression|journal = Knowledge and Information Systems|year = 2018|last1 = Marx|first1 = Alexander|last2 = Vreeken|first2 = Jilles|volume=60|issue = 3|pages=1277–1305|doi-access = free}}</ref>
 
The shortest such program implies the uncompressed stored variable more-likely causes the computed variable.<ref>Kailash Budhathoki and Jilles Vreeken "[http://eda.mmci.uni-saarland.de/pubs/2016/origo-budhathoki,vreeken.pdf Causal Inference by Compression]" 2016 IEEE 16th International Conference on Data Mining (ICDM)</ref><ref>{{Cite journal |doi = 10.1007/s10115-018-1286-7|title = Telling cause from effect by local and global regression|journal = Knowledge and Information Systems|year = 2018|last1 = Marx|first1 = Alexander|last2 = Vreeken|first2 = Jilles|volume=60|issue = 3|pages=1277–1305|doi-access = free}}</ref>
   −
最短的这种程序意味着,更有可能是未压缩的'''<font color='#32cd32>存储变量stored variable</font>'''导致了'''<font color='#32cd32>计算出的变量computed variable</font>'''。
+
最短的这种程序意味着,更有可能是未压缩的'''<font color='#ff8000>存储变量stored variable</font>'''导致了'''<font color='#ff8000>计算出的变量computed variable</font>'''。
 +
 
 +
===Noise models噪音模型===
   −
===Noise models===
     −
噪音模型
         
Incorporate an independent noise term in the model to compare the evidences of the two directions.
 
Incorporate an independent noise term in the model to compare the evidences of the two directions.
   −
在模型中引入一个独立的噪声项,比较两个方向的证据。
+
在模型中引入一个独立的噪声项,以比较两个方向的证据。
       
Here are some of the noise models for the hypothesis Y → X with the noise E:
 
Here are some of the noise models for the hypothesis Y → X with the noise E:
   −
下面是一些假设 y x 有噪声 e 的噪声模型:
+
下面是一些支持 Y X 假设且具有噪声 E 的噪声模型:
 
* Additive noise:<ref>Hoyer, Patrik O., et al. "[https://papers.nips.cc/paper/3548-nonlinear-causal-discovery-with-additive-noise-models.pdf Nonlinear causal discovery with additive noise models]." NIPS. Vol. 21. 2008.</ref> <math>Y = F(X)+E</math>
 
* Additive noise:<ref>Hoyer, Patrik O., et al. "[https://papers.nips.cc/paper/3548-nonlinear-causal-discovery-with-additive-noise-models.pdf Nonlinear causal discovery with additive noise models]." NIPS. Vol. 21. 2008.</ref> <math>Y = F(X)+E</math>
 +
* '''<font color='#ff8000>加法噪音Additive noise</font>'''
    
* Linear noise:<ref>{{cite journal | last1 = Shimizu | first1 = Shohei | display-authors = etal | year = 2011 | title = DirectLiNGAM: A direct method for learning a linear non-Gaussian structural equation model | url = http://www.jmlr.org/papers/volume12/shimizu11a/shimizu11a.pdf | journal = The Journal of Machine Learning Research | volume = 12 | issue = | pages = 1225–1248 }}</ref> <math>Y = pX + qE</math>
 
* Linear noise:<ref>{{cite journal | last1 = Shimizu | first1 = Shohei | display-authors = etal | year = 2011 | title = DirectLiNGAM: A direct method for learning a linear non-Gaussian structural equation model | url = http://www.jmlr.org/papers/volume12/shimizu11a/shimizu11a.pdf | journal = The Journal of Machine Learning Research | volume = 12 | issue = | pages = 1225–1248 }}</ref> <math>Y = pX + qE</math>
 +
* '''<font color='#ff8000>线性噪音Linear noise</font>'''
    
* Post-non-linear:<ref>Zhang, Kun, and Aapo Hyvärinen. "[https://arxiv.org/pdf/1205.2599 On the identifiability of the post-nonlinear causal model]." Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence. AUAI Press, 2009.</ref> <math>Y = G(F(X)+E)</math>
 
* Post-non-linear:<ref>Zhang, Kun, and Aapo Hyvärinen. "[https://arxiv.org/pdf/1205.2599 On the identifiability of the post-nonlinear causal model]." Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence. AUAI Press, 2009.</ref> <math>Y = G(F(X)+E)</math>
 +
* '''<font color='#ff8000>后非线性Post-non-linear(噪音)</font>'''
    
* Heteroskedastic noise: <math>Y = F(X)+E.G(X)</math>
 
* Heteroskedastic noise: <math>Y = F(X)+E.G(X)</math>
 +
* '''<font color='#ff8000>异方差噪音Heteroskedastic noise</font>'''
    
* Functional noise:<ref name="Mooij">Mooij, Joris M., et al. "[http://papers.nips.cc/paper/4173-probabilistic-latent-variable-models-for-distinguishing-between-cause-and-effect.pdf Probabilistic latent variable models for distinguishing between cause and effect]." NIPS. 2010.</ref> <math>Y = F(X,E)</math>
 
* Functional noise:<ref name="Mooij">Mooij, Joris M., et al. "[http://papers.nips.cc/paper/4173-probabilistic-latent-variable-models-for-distinguishing-between-cause-and-effect.pdf Probabilistic latent variable models for distinguishing between cause and effect]." NIPS. 2010.</ref> <math>Y = F(X,E)</math>
 
+
* '''<font color='#ff8000>功能性噪音Functional noise</font>'''
      第113行: 第117行:  
这些模型的共同假设是:
 
这些模型的共同假设是:
 
* There are no other causes of Y.
 
* There are no other causes of Y.
 +
* Y 没有其他原因。
    
* X and E have no common causes.
 
* X and E have no common causes.
 +
* X 和 E 没有共同的原因。
    
* Distribution of cause is independent from causal mechanisms.
 
* Distribution of cause is independent from causal mechanisms.
 +
* 原因的分布独立于因果机制。
   −
 
+
== here ==
 
   
On an intuitive level, the idea is that the factorization of the joint distribution P(Cause, Effect) into  P(Cause)*P(Effect | Cause) typically yields models of lower total complexity than the factorization into  P(Effect)*P(Cause | Effect). Although the notion of “complexity” is intuitively appealing, it is not obvious how it should be precisely defined.<ref name="Mooij"/> A different family of methods attempt to discover causal "footprints" from large amounts of labeled data, and allow the prediction of more flexible causal relations.<ref>Lopez-Paz, David, et al. "[http://www.jmlr.org/proceedings/papers/v37/lopez-paz15.pdf Towards a learning theory of cause-effect inference]" ICML. 2015</ref>
 
On an intuitive level, the idea is that the factorization of the joint distribution P(Cause, Effect) into  P(Cause)*P(Effect | Cause) typically yields models of lower total complexity than the factorization into  P(Effect)*P(Cause | Effect). Although the notion of “complexity” is intuitively appealing, it is not obvious how it should be precisely defined.<ref name="Mooij"/> A different family of methods attempt to discover causal "footprints" from large amounts of labeled data, and allow the prediction of more flexible causal relations.<ref>Lopez-Paz, David, et al. "[http://www.jmlr.org/proceedings/papers/v37/lopez-paz15.pdf Towards a learning theory of cause-effect inference]" ICML. 2015</ref>
   −
在直观的层面上,这个想法是联合分布 p (因果)到 p (因果) * p (效果 | 原因)的因式分解通常产生的模型的总复杂性低于因式分解到 p (效果) * p (因果)。尽管“复杂性”的概念在直觉上很吸引人,但是它应该如何精确定义却并不明显。
+
在直观的层面上,这个想法是联合分布 P(Cause, Effect) 到 P(Cause)*P(Effect | Cause)的因式分解通常产生的模型的总复杂性低于因式分解到 p (效果) * p (因果)。尽管“复杂性”的概念在直觉上很吸引人,但是它应该如何精确定义却并不明显。
 
      
== In statistics and economics ==
 
== In statistics and economics ==
259

个编辑

导航菜单