第270行: |
第270行: |
| Centrality indices have two important limitations, one obvious and the other subtle. The obvious limitation is that a centrality which is optimal for one application is often sub-optimal for a different application. Indeed, if this were not so, we would not need so many different centralities. An illustration of this phenomenon is provided by the Krackhardt kite graph, for which three different notions of centrality give three different choices of the most central vertex. | | Centrality indices have two important limitations, one obvious and the other subtle. The obvious limitation is that a centrality which is optimal for one application is often sub-optimal for a different application. Indeed, if this were not so, we would not need so many different centralities. An illustration of this phenomenon is provided by the Krackhardt kite graph, for which three different notions of centrality give three different choices of the most central vertex. |
| | | |
− | '''<font color="#ff8000"> 中心性Centrality</font>'''指标有两个重要的局限性,一个是显而易见的,另一个是微妙的。显而易见的局限性是,对于一个应用最优的中心性对于另一个应用常常是次优的。事实上,如果不是这样,我们就不需要这么多不同的中心性。克拉克哈特风筝图为这一现象提供了一个例证,对于这个图,三个不同的中心性概念给出了三个最中心顶点的不同选择。 | + | '''<font color="#ff8000"> 中心性Centrality</font>'''指标有两个重要的局限性,一个显而易见,另一个则不易察觉。显而易见的局限性是,对于一个应用最优的中心性对于另一个应用常常是次优的。事实上,如果不是这样,我们就不需要这么多不同的中心性。克拉克哈特风筝图为这一现象提供了一个例证,对于这个图,三个不同的中心性概念给出了三个最中心顶点的不同选择。 |
| | | |
| | | |
第278行: |
第278行: |
| The more subtle limitation is the commonly held fallacy that vertex centrality indicates the relative importance of vertices. Centrality indices are explicitly designed to produce a ranking which allows indication of the most important vertices. This they do well, under the limitation just noted. They are not designed to measure the influence of nodes in general. Recently, network physicists have begun developing node influence metrics to address this problem. | | The more subtle limitation is the commonly held fallacy that vertex centrality indicates the relative importance of vertices. Centrality indices are explicitly designed to produce a ranking which allows indication of the most important vertices. This they do well, under the limitation just noted. They are not designed to measure the influence of nodes in general. Recently, network physicists have begun developing node influence metrics to address this problem. |
| | | |
− | 更微妙的限制是通常认为的顶点中心性表示顶点的相对重要性的谬误。中心性指数被明确地设计来产生一个指出最重要顶点的排名。在刚才提到的限制下,他们做得很好。它们通常不是用来测量节点的影响的。最近,网络物理学家开始开发节点影响度量来解决这个问题。
| + | 更不易察觉的限制是通常会错误地认为顶点中心性表示顶点的相对重要性。中心性指数被明确地设计来产生一个指出最重要顶点的排名。在刚才提到的限制下,他们做得很好。它们通常不用来测量节点的影响力。最近,网络物理学家开始开发'''<font color="#ff8000">节点影响度量Node influence metrics </font>'''来解决这个问题。 |
| | | |
| | | |
第286行: |
第286行: |
| The error is two-fold. Firstly, a ranking only orders vertices by importance, it does not quantify the difference in importance between different levels of the ranking. This may be mitigated by applying Freeman centralization to the centrality measure in question, which provide some insight to the importance of nodes depending on the differences of their centralization scores. Furthermore, Freeman centralization enables one to compare several networks by comparing their highest centralization scores. This approach, however, is seldom seen in practice. | | The error is two-fold. Firstly, a ranking only orders vertices by importance, it does not quantify the difference in importance between different levels of the ranking. This may be mitigated by applying Freeman centralization to the centrality measure in question, which provide some insight to the importance of nodes depending on the differences of their centralization scores. Furthermore, Freeman centralization enables one to compare several networks by comparing their highest centralization scores. This approach, however, is seldom seen in practice. |
| | | |
− | 误差是双重的。首先,一个排名只根据顶点的重要性排序,它并不对节点重要性的不同水平进行量化区分。这可以通过将 Freeman (自由人)集中度应用到中心性度量来缓解,这种度量可以根据节点集中度得分的不同来判断节点的重要性。此外,Freeman (自由人)集中化使人们能够通过比较几个网络的最高集中化得分来比较它们。然而,这种方法在实践中很少见到。
| + | 错误有两方面。首先,一个排名只根据顶点的重要性排序,它并不对节点重要性的不同水平进行量化区分。这可以通过将 '''<font color="#ff8000"> 弗里曼中心性Freeman centralization</font>'''应用到中心性度量来缓解,这种度量可以根据节点的不同中心性得分来判断节点的重要性。此外, '''<font color="#ff8000"> 弗里曼中心性Freeman centralization</font>''使人们能够通过比较几个网络的最高中心性得分来比较它们。然而,这种方法在实践中很少见到。 |
| | | |
| | | |
第294行: |
第294行: |
| Secondly, the features which (correctly) identify the most important vertices in a given network/application do not necessarily generalize to the remaining vertices. | | Secondly, the features which (correctly) identify the most important vertices in a given network/application do not necessarily generalize to the remaining vertices. |
| | | |
− | 其次,用以(正确地)识别给定网络/应用程序中最重要顶点的特征并不一定可推广到其余顶点。 | + | 其次,用以(正确地)识别给定网络/应用中最重要顶点的特征并不一定可推广到其余顶点。 |
| | | |
| For the majority of other network nodes the rankings may be meaningless.<ref name="Lawyer2015" /><ref name="daSilva2012">{{cite journal | last1=da Silva|first1=Renato |last2=Viana|first2=Matheus|last3=da F. Costa |first3=Luciano| title=Predicting epidemic outbreak from individual features of the spreaders| journal=J. Stat. Mech.: Theory Exp. | year=2012|volume=2012|pages=P07005|number=7 | doi=10.1088/1742-5468/2012/07/p07005|arxiv=1202.0024|bibcode=2012JSMTE..07..005A}}</ref><ref name="Bauer2012">{{cite journal | last1=Bauer|first1=Frank | last2=Lizier|first2=Joseph|title=Identifying influential spreaders and efficiently estimating infection numbers in epidemic models: A walk counting approach| journal=Europhys Lett | year=2012| volume=99| pages=68007|number=6 | doi=10.1209/0295-5075/99/68007|arxiv=1203.0502|bibcode=2012EL.....9968007B}}</ref><ref name="Sikic2013">{{ cite journal| last1= Sikic| first1=Mile|last2=Lancic|first2=Alen|last3=Antulov-Fantulin|first3=Nino|last4=Stefanic|first4=Hrvoje| title = Epidemic centrality -- is there an underestimated epidemic impact of network peripheral nodes? |journal = The European Physical Journal B |volume=86 |number=10 |pages=1–13 |year=2013 | doi=10.1140/epjb/e2013-31025-5|arxiv=1110.2558 | bibcode=2013EPJB...86..440S}}</ref> This explains why, for example, only the first few results of a Google image search appear in a reasonable order. The pagerank is a highly unstable measure, showing frequent rank reversals after small adjustments of the jump parameter.<ref name="Ghoshal2011">{{cite journal | last1=Ghoshal | first1= G. | last2= Barabsi |first2= A L | title = Ranking stability and super-stable nodes in complex networks. | journal = Nat Commun | volume =2 | page = 394| year= 2011 | doi=10.1038/ncomms1396 | pmid= 21772265 | bibcode=2011NatCo...2..394G | doi-access= free }}</ref> | | For the majority of other network nodes the rankings may be meaningless.<ref name="Lawyer2015" /><ref name="daSilva2012">{{cite journal | last1=da Silva|first1=Renato |last2=Viana|first2=Matheus|last3=da F. Costa |first3=Luciano| title=Predicting epidemic outbreak from individual features of the spreaders| journal=J. Stat. Mech.: Theory Exp. | year=2012|volume=2012|pages=P07005|number=7 | doi=10.1088/1742-5468/2012/07/p07005|arxiv=1202.0024|bibcode=2012JSMTE..07..005A}}</ref><ref name="Bauer2012">{{cite journal | last1=Bauer|first1=Frank | last2=Lizier|first2=Joseph|title=Identifying influential spreaders and efficiently estimating infection numbers in epidemic models: A walk counting approach| journal=Europhys Lett | year=2012| volume=99| pages=68007|number=6 | doi=10.1209/0295-5075/99/68007|arxiv=1203.0502|bibcode=2012EL.....9968007B}}</ref><ref name="Sikic2013">{{ cite journal| last1= Sikic| first1=Mile|last2=Lancic|first2=Alen|last3=Antulov-Fantulin|first3=Nino|last4=Stefanic|first4=Hrvoje| title = Epidemic centrality -- is there an underestimated epidemic impact of network peripheral nodes? |journal = The European Physical Journal B |volume=86 |number=10 |pages=1–13 |year=2013 | doi=10.1140/epjb/e2013-31025-5|arxiv=1110.2558 | bibcode=2013EPJB...86..440S}}</ref> This explains why, for example, only the first few results of a Google image search appear in a reasonable order. The pagerank is a highly unstable measure, showing frequent rank reversals after small adjustments of the jump parameter.<ref name="Ghoshal2011">{{cite journal | last1=Ghoshal | first1= G. | last2= Barabsi |first2= A L | title = Ranking stability and super-stable nodes in complex networks. | journal = Nat Commun | volume =2 | page = 394| year= 2011 | doi=10.1038/ncomms1396 | pmid= 21772265 | bibcode=2011NatCo...2..394G | doi-access= free }}</ref> |
第300行: |
第300行: |
| For the majority of other network nodes the rankings may be meaningless. This explains why, for example, only the first few results of a Google image search appear in a reasonable order. The pagerank is a highly unstable measure, showing frequent rank reversals after small adjustments of the jump parameter. | | For the majority of other network nodes the rankings may be meaningless. This explains why, for example, only the first few results of a Google image search appear in a reasonable order. The pagerank is a highly unstable measure, showing frequent rank reversals after small adjustments of the jump parameter. |
| | | |
− | 对于大多数其他网络节点,排名可能是没有意义的。这就解释了为什么,例如,只有谷歌图片搜索的前几个结果以合理的顺序出现。Pagerank(网页排名) 是一个非常不稳定的度量,显示了在跳转参数小的调整之后频繁的秩逆转。
| + | 对于大多数其他网络节点,排名可能是没有意义的。这就解释了为什么,例如,只有谷歌图片搜索的前几个结果以合理的顺序出现。'''<font color="#ff8000"> 网页排名Pagerank</font>'''是一个非常不稳定的度量,显示了在跳转参数小的调整之后频繁的秩逆转。 |
| | | |
| | | |
第308行: |
第308行: |
| While the failure of centrality indices to generalize to the rest of the network may at first seem counter-intuitive, it follows directly from the above definitions. | | While the failure of centrality indices to generalize to the rest of the network may at first seem counter-intuitive, it follows directly from the above definitions. |
| | | |
− | 虽然向心性指数未能推广到网络的其他部分,乍看起来似乎是违反直觉的,但它直接遵循上述定义。
| + | 虽然中心性指数未能推广到网络的其他部分,乍看起来似乎是违反直觉的,但它直接遵循上述定义。 |
| | | |
| Complex networks have heterogeneous topology. To the extent that the optimal measure depends on the network structure of the most important vertices, a measure which is optimal for such vertices is sub-optimal for the remainder of the network.<ref name="Lawyer2015">{{cite journal |last1= Lawyer |first1= Glenn |year= 2015 |title= Understanding the spreading power of all nodes in a network: a continuous-time perspective |journal=Sci Rep |volume=5|pages=8665|doi=10.1038/srep08665 |pmid=25727453 |pmc=4345333|arxiv=1405.6707|bibcode=2015NatSR...5E8665L}}</ref> | | Complex networks have heterogeneous topology. To the extent that the optimal measure depends on the network structure of the most important vertices, a measure which is optimal for such vertices is sub-optimal for the remainder of the network.<ref name="Lawyer2015">{{cite journal |last1= Lawyer |first1= Glenn |year= 2015 |title= Understanding the spreading power of all nodes in a network: a continuous-time perspective |journal=Sci Rep |volume=5|pages=8665|doi=10.1038/srep08665 |pmid=25727453 |pmc=4345333|arxiv=1405.6707|bibcode=2015NatSR...5E8665L}}</ref> |