第1,936行: |
第1,936行: |
| *两支参赛队伍在运动中的进球数。{{r|Hornby2014}} | | *两支参赛队伍在运动中的进球数。{{r|Hornby2014}} |
| * The number of deaths per year in a given age group. | | * The number of deaths per year in a given age group. |
− | | + | *特定年龄组每年的死亡人数。 |
| * The number of jumps in a stock price in a given time interval. | | * The number of jumps in a stock price in a given time interval. |
− | | + | *股票价格在给定时间间隔内的波动次数。 |
| * Under an assumption of [[Poisson process#Homogeneous|homogeneity]], the number of times a [[web server]] is accessed per minute. | | * Under an assumption of [[Poisson process#Homogeneous|homogeneity]], the number of times a [[web server]] is accessed per minute. |
− | | + | *在[[泊松过程#齐次|均匀性]假设下,每分钟访问[[web服务器]]的次数。 |
| * The number of [[mutation]]s in a given stretch of [[DNA]] after a certain amount of radiation. | | * The number of [[mutation]]s in a given stretch of [[DNA]] after a certain amount of radiation. |
− | | + | *在一定量的辐射之后,在给定的[[DNA]]段中[[突变]]的数目。 |
| * The proportion of [[cells (biology)|cells]] that will be infected at a given [[multiplicity of infection]]. | | * The proportion of [[cells (biology)|cells]] that will be infected at a given [[multiplicity of infection]]. |
− | | + | *在给定的时间内被感染的[[细胞(生物学)|细胞]]的比例。 |
| * The number of bacteria in a certain amount of liquid.{{r|Koyama2016}} | | * The number of bacteria in a certain amount of liquid.{{r|Koyama2016}} |
− | | + | *一定量液体中细菌的数量。{{r|Koyama2016}} |
| * The arrival of [[photons]] on a pixel circuit at a given illumination and over a given time period. | | * The arrival of [[photons]] on a pixel circuit at a given illumination and over a given time period. |
− | | + | *在给定的光照和时间间隔,到达像素电路的[[光子]]。 |
| * The targeting of [[V-1 flying bomb]]s on London during World War II investigated by R. D. Clarke in 1946.{{r|Clarke1946}} | | * The targeting of [[V-1 flying bomb]]s on London during World War II investigated by R. D. Clarke in 1946.{{r|Clarke1946}} |
− | | + | *二战期间伦敦对[[V-1飞弹]]的目标调查||由R. D. Clarke 1946年调查。{{r|Clarke1946}} |
| [[Patrick X. Gallagher|Gallagher]] showed in 1976 that the counts of [[prime number]]s in short intervals obey a Poisson distribution{{r|Gallagher1976}} provided a certain version of the unproved [[Second Hardy–Littlewood conjecture|prime r-tuple conjecture of Hardy-Littlewood]]{{r|Hardy1923}} is true. | | [[Patrick X. Gallagher|Gallagher]] showed in 1976 that the counts of [[prime number]]s in short intervals obey a Poisson distribution{{r|Gallagher1976}} provided a certain version of the unproved [[Second Hardy–Littlewood conjecture|prime r-tuple conjecture of Hardy-Littlewood]]{{r|Hardy1923}} is true. |
| | | |
| Gallagher showed in 1976 that the counts of prime numbers in short intervals obey a Poisson distribution provided a certain version of the unproved prime r-tuple conjecture of Hardy-Littlewood is true. | | Gallagher showed in 1976 that the counts of prime numbers in short intervals obey a Poisson distribution provided a certain version of the unproved prime r-tuple conjecture of Hardy-Littlewood is true. |
| | | |
− | 1976年,加拉格尔指出,只要未经证明的 Hardy-Littlewood 素数 r-tuple 猜想在某种程度上是正确的,那么短时间内的素数计数就服从一个泊松分佈。
| + | 1976年,加拉格尔指出,只要Hardy-Littlewo素数r-元组猜想的一个版本为正确,短时间间隔内质数的计数即服从泊松分布。 |
| | | |
| | | |
第1,963行: |
第1,963行: |
| | | |
| | | |
− | === Law of rare events === | + | === Law of rare events稀有事件定律 === |
| | | |
| {{main|Poisson limit theorem}} | | {{main|Poisson limit theorem}} |
第2,037行: |
第2,037行: |
| | | |
| | | |
− | === Poisson point process === | + | ==='''<font color="#ff8000"> Poisson point process 泊松点过程</font>'''=== |
| | | |
| | | |
第2,073行: |
第2,073行: |
| | | |
| | | |
− | === Other applications in science === | + | === Other applications in science 科学上的其他应用=== |
| | | |
| | | |
第2,117行: |
第2,117行: |
| In Causal Set theory the discrete elements of spacetime follow a Poisson distribution in the volume. | | In Causal Set theory the discrete elements of spacetime follow a Poisson distribution in the volume. |
| | | |
− | 在因果集合论中,时空的离散元素在卷中遵循一个泊松分佈。
| + | 在'''<font color="#ff8000"> 因果集合论Causal Set theory</font>'''中,时空的离散元素在集合中遵循一个泊松分佈。 |
| | | |
− | ==Computational methods== | + | ==Computational methods计算方法== |
| | | |
| | | |