更改

跳到导航 跳到搜索
添加695字节 、 2020年8月24日 (一) 18:34
无编辑摘要
第1,936行: 第1,936行:  
*两支参赛队伍在运动中的进球数。{{r|Hornby2014}}
 
*两支参赛队伍在运动中的进球数。{{r|Hornby2014}}
 
* The number of deaths per year in a given age group.
 
* The number of deaths per year in a given age group.
 
+
*特定年龄组每年的死亡人数。
 
* The number of jumps in a stock price in a given time interval.
 
* The number of jumps in a stock price in a given time interval.
 
+
*股票价格在给定时间间隔内的波动次数。
 
* Under an assumption of [[Poisson process#Homogeneous|homogeneity]], the number of times a [[web server]] is accessed per minute.
 
* Under an assumption of [[Poisson process#Homogeneous|homogeneity]], the number of times a [[web server]] is accessed per minute.
 
+
*在[[泊松过程#齐次|均匀性]假设下,每分钟访问[[web服务器]]的次数。
 
* The number of [[mutation]]s in a given stretch of [[DNA]] after a certain amount of radiation.
 
* The number of [[mutation]]s in a given stretch of [[DNA]] after a certain amount of radiation.
 
+
*在一定量的辐射之后,在给定的[[DNA]]段中[[突变]]的数目。
 
* The proportion of [[cells (biology)|cells]] that will be infected at a given [[multiplicity of infection]].
 
* The proportion of [[cells (biology)|cells]] that will be infected at a given [[multiplicity of infection]].
 
+
*在给定的时间内被感染的[[细胞(生物学)|细胞]]的比例。
 
* The number of bacteria in a certain amount of liquid.{{r|Koyama2016}}
 
* The number of bacteria in a certain amount of liquid.{{r|Koyama2016}}
 
+
*一定量液体中细菌的数量。{{r|Koyama2016}}
 
* The arrival of [[photons]] on a pixel circuit at a given illumination and over a given time period.
 
* The arrival of [[photons]] on a pixel circuit at a given illumination and over a given time period.
 
+
*在给定的光照和时间间隔,到达像素电路的[[光子]]。
 
* The targeting of [[V-1 flying bomb]]s on London during World War II investigated by R. D. Clarke in 1946.{{r|Clarke1946}}
 
* The targeting of [[V-1 flying bomb]]s on London during World War II investigated by R. D. Clarke in 1946.{{r|Clarke1946}}
 
+
*二战期间伦敦对[[V-1飞弹]]的目标调查||由R. D. Clarke 1946年调查。{{r|Clarke1946}}
 
[[Patrick X. Gallagher|Gallagher]] showed in 1976 that the counts of [[prime number]]s in short intervals obey a Poisson distribution{{r|Gallagher1976}} provided a certain version of the unproved [[Second Hardy–Littlewood conjecture|prime r-tuple conjecture of Hardy-Littlewood]]{{r|Hardy1923}} is true.
 
[[Patrick X. Gallagher|Gallagher]] showed in 1976 that the counts of [[prime number]]s in short intervals obey a Poisson distribution{{r|Gallagher1976}} provided a certain version of the unproved [[Second Hardy–Littlewood conjecture|prime r-tuple conjecture of Hardy-Littlewood]]{{r|Hardy1923}} is true.
    
Gallagher showed in 1976 that the counts of prime numbers in short intervals obey a Poisson distribution provided a certain version of the unproved prime r-tuple conjecture of Hardy-Littlewood is true.
 
Gallagher showed in 1976 that the counts of prime numbers in short intervals obey a Poisson distribution provided a certain version of the unproved prime r-tuple conjecture of Hardy-Littlewood is true.
   −
1976年,加拉格尔指出,只要未经证明的 Hardy-Littlewood 素数 r-tuple 猜想在某种程度上是正确的,那么短时间内的素数计数就服从一个泊松分佈。
+
1976年,加拉格尔指出,只要Hardy-Littlewo素数r-元组猜想的一个版本为正确,短时间间隔内质数的计数即服从泊松分布。
      第1,963行: 第1,963行:       −
=== Law of rare events ===
+
=== Law of rare events稀有事件定律 ===
    
{{main|Poisson limit theorem}}
 
{{main|Poisson limit theorem}}
第2,037行: 第2,037行:       −
=== Poisson point process ===
+
==='''<font color="#ff8000">  Poisson point process 泊松点过程</font>'''===
      第2,073行: 第2,073行:       −
=== Other applications in science ===
+
=== Other applications in science 科学上的其他应用===
      第2,117行: 第2,117行:  
In Causal Set theory the discrete elements of spacetime follow a Poisson distribution in the volume.
 
In Causal Set theory the discrete elements of spacetime follow a Poisson distribution in the volume.
   −
在因果集合论中,时空的离散元素在卷中遵循一个泊松分佈。
+
在'''<font color="#ff8000"> 因果集合论Causal Set theory</font>'''中,时空的离散元素在集合中遵循一个泊松分佈。
   −
==Computational methods==
+
==Computational methods计算方法==
     
561

个编辑

导航菜单