更改

跳到导航 跳到搜索
添加51字节 、 2020年8月26日 (三) 10:38
第291行: 第291行:  
The integral cycle space of a graph is equal to the null space of its oriented incidence matrix, viewed as a matrix over the integers or real or complex numbers. The binary cycle space is the null space of its oriented or unoriented incidence matrix, viewed as a matrix over the two-element field.
 
The integral cycle space of a graph is equal to the null space of its oriented incidence matrix, viewed as a matrix over the integers or real or complex numbers. The binary cycle space is the null space of its oriented or unoriented incidence matrix, viewed as a matrix over the two-element field.
   −
图的整圈空间等于其有向关联矩阵的零空间,可以看作是整数或实数或复数上的矩阵。二元循环空间是有向或无向关联矩阵的零空间,可以看作是二元场上的矩阵。
+
图的'''<font color="#ff8000">圈空间 Cycle Space</font>'''等j价于其有向关联矩阵的零空间,可以看作是整数或实数或复数上的矩阵。二元循环空间是有向或无向关联矩阵的零空间,也可以看作是二元场上的矩阵。
    
===Signed and bidirected graphs===
 
===Signed and bidirected graphs===
274

个编辑

导航菜单