更改

跳到导航 跳到搜索
添加106字节 、 2020年9月25日 (五) 18:51
第121行: 第121行:     
==Control of composite quantum systems and algebraic graph theory==
 
==Control of composite quantum systems and algebraic graph theory==
 +
复合量子系统的控制与代数图论<br>
    
A control theory of networks has also been developed in the context of universal control for composite quantum systems, where subsystems and their interactions are associated to nodes and links, respectively.<ref name="BG-07">{{cite journal | last=Burgarth | first=Daniel | last2=Giovannetti | first2=Vittorio | title=Full Control by Locally Induced Relaxation | journal=Physical Review Letters | publisher=American Physical Society (APS) | volume=99 | issue=10 | date=2007-09-05 | issn=0031-9007 | doi=10.1103/physrevlett.99.100501 | page=100501| arxiv=0704.3027 }}</ref> This framework permits to formulate Kalman's criterion with tools from [[algebraic graph theory]] via the [[minimum rank of a graph]] and related notions.<ref name="BDHSY-13">{{cite journal|last1=Burgarth|first1=Daniel|last2=D'Alessandro|first2=Domenico|last3=Hogben|first3=Leslie|author3-link=Leslie Hogben|last4=Severini|first4=Simone|last5=Young|first5=Michael|doi=10.1109/TAC.2013.2250075|issue=9|journal=IEEE Transactions on Automatic Control|mr=3101617|pages=2349–2354|title=Zero forcing, linear and quantum controllability for systems evolving on networks|volume=58|year=2013}}</ref><ref name="OT-15">S. O'Rourke, B. Touri, https://arxiv.org/abs/1511.05080.</ref>
 
A control theory of networks has also been developed in the context of universal control for composite quantum systems, where subsystems and their interactions are associated to nodes and links, respectively.<ref name="BG-07">{{cite journal | last=Burgarth | first=Daniel | last2=Giovannetti | first2=Vittorio | title=Full Control by Locally Induced Relaxation | journal=Physical Review Letters | publisher=American Physical Society (APS) | volume=99 | issue=10 | date=2007-09-05 | issn=0031-9007 | doi=10.1103/physrevlett.99.100501 | page=100501| arxiv=0704.3027 }}</ref> This framework permits to formulate Kalman's criterion with tools from [[algebraic graph theory]] via the [[minimum rank of a graph]] and related notions.<ref name="BDHSY-13">{{cite journal|last1=Burgarth|first1=Daniel|last2=D'Alessandro|first2=Domenico|last3=Hogben|first3=Leslie|author3-link=Leslie Hogben|last4=Severini|first4=Simone|last5=Young|first5=Michael|doi=10.1109/TAC.2013.2250075|issue=9|journal=IEEE Transactions on Automatic Control|mr=3101617|pages=2349–2354|title=Zero forcing, linear and quantum controllability for systems evolving on networks|volume=58|year=2013}}</ref><ref name="OT-15">S. O'Rourke, B. Touri, https://arxiv.org/abs/1511.05080.</ref>
第126行: 第127行:  
A control theory of networks has also been developed in the context of universal control for composite quantum systems, where subsystems and their interactions are associated to nodes and links, respectively. This framework permits to formulate Kalman's criterion with tools from algebraic graph theory via the minimum rank of a graph and related notions.
 
A control theory of networks has also been developed in the context of universal control for composite quantum systems, where subsystems and their interactions are associated to nodes and links, respectively. This framework permits to formulate Kalman's criterion with tools from algebraic graph theory via the minimum rank of a graph and related notions.
   −
在复合量子系统的通用控制的背景下,也发展了网络控制理论,其中子系统及其相互作用分别与节点和链路相关联。这个框架允许用代数图论的工具通过图的最小秩和相关概念来建立卡尔曼准则。
+
在复合量子系统的通用控制的背景下,还开发了网络控制理论,其中子系统及其相互作用分别与节点和链路相关联。该框架允许使用代数图论中的工具通过图的最小等级和相关概念来制定'''<font color="#FF8000">卡尔曼准则 Kalman's Criterion </font>'''。
 
  −
 
      
== See also ==
 
== See also ==
274

个编辑

导航菜单