第29行: |
第29行: |
| 一张图的三元闭合的两个最常见的度量是(不按特定顺序)该图的'''<font color="#FF8000">聚类系数 Clustering Coefficient </font>'''和'''<font color="#FF8000">可传递性 Transitivity </font>'''。 | | 一张图的三元闭合的两个最常见的度量是(不按特定顺序)该图的'''<font color="#FF8000">聚类系数 Clustering Coefficient </font>'''和'''<font color="#FF8000">可传递性 Transitivity </font>'''。 |
| | | |
− | ===Clustering coefficient===
| + | ==Clustering coefficient== |
| 聚类系数 | | 聚类系数 |
| One measure for the presence of triadic closure is [[clustering coefficient]], as follows: | | One measure for the presence of triadic closure is [[clustering coefficient]], as follows: |
第50行: |
第50行: |
| We can define a triangle among the triple of vertices <math>i</math>, <math>j</math>, and <math>k</math> to be a set with the following three edges: {(i,j), (j,k), (i,k)}. | | We can define a triangle among the triple of vertices <math>i</math>, <math>j</math>, and <math>k</math> to be a set with the following three edges: {(i,j), (j,k), (i,k)}. |
| | | |
− | 我们可以定义三个顶点之间的三角形 < math > ,< math > j </math > ,< math > k </math > 是一个具有以下三个边的集合: {(i,j) ,(j,k) ,(i,k)}。
| + | 我们可以在三个顶点<math>i</math>,<math>j</math>和<math>k</math>中定义一个三角形,以使其具有以下三个边的集合:{(i ,j),(j,k),(i,k)}。 |
| | | |
| | | |
第58行: |
第58行: |
| We can also define the number of triangles that vertex <math>i</math> is involved in as <math>\delta (i)</math> and, as each triangle is counted three times, we can express the number of triangles in G as <math>\delta (G) = \frac{1}{3} \sum_{i\in V} \ \delta (i)</math>. | | We can also define the number of triangles that vertex <math>i</math> is involved in as <math>\delta (i)</math> and, as each triangle is counted three times, we can express the number of triangles in G as <math>\delta (G) = \frac{1}{3} \sum_{i\in V} \ \delta (i)</math>. |
| | | |
− | 我们还可以定义顶点 < math > i </math > 所涉及的三角形的个数为 < math > delta (i) </math > ,并且,当每个三角形被计算三次时,我们可以将 g 中三角形的个数表示为 < math > delta (g) = frac {1}{3} sum _ i in v } delta (i) </math > 。
| + | 我们也可以将顶点<math>i</math>所涉及的三角形的数量定义为<math>\delta(i)</math>,并且,由于每个三角形都被计数了三次,因此我们可以表示 G中的三角形为<math>\delta(G)= \frac{1}{3} \sum_{i\in V} \ \ delta(i</math>。 |
| | | |
| | | |
第66行: |
第66行: |
| Assuming that triadic closure holds, only two strong edges are required for a triple to form. Thus, the number of theoretical triples that should be present under the triadic closure hypothesis for a vertex <math>i</math> is <math>\tau (i) = \binom{d_i}{2}</math>, assuming <math>d_i \ge 2</math>. We can express <math>\tau (G) = \frac{1}{3} \sum_{i\in V} \ \tau (i)</math>. | | Assuming that triadic closure holds, only two strong edges are required for a triple to form. Thus, the number of theoretical triples that should be present under the triadic closure hypothesis for a vertex <math>i</math> is <math>\tau (i) = \binom{d_i}{2}</math>, assuming <math>d_i \ge 2</math>. We can express <math>\tau (G) = \frac{1}{3} \sum_{i\in V} \ \tau (i)</math>. |
| | | |
− | 假设三元闭包成立,一个三元组只需要两条强边即可形成。因此,在三元闭包假设下,顶点 i </math > i </math > 的理论三元数应该是 < math > tau (i) = binom { d _ i }{2} </math > ,假设 < math > d _ i ge 2 </math > 。我们可以表示 < math > tau (g) = frac {1}{3} sum { i in v } tau (i) </math > 。
| + | 假设三元闭包成立,则一个三元组的形成仅需要两个牢固的边缘。 因此,在顶点<math>i</math>的三元组关闭假设下应该出现的理论三元组的数量为<math>\tau(i)= \binom{d_i}{2}</math>, 假设<math>d_i \ge 2</math>。 我们可以表示<math>\tau(G)= \frac{1}{3} \sum_{i\in V} \ \tau(i)</math>。 |
| | | |
| | | |
第74行: |
第74行: |
| Now, for a vertex <math>i</math> with <math>d_i \ge 2</math>, the clustering coefficient <math>c(i)</math> of vertex <math>i</math> is the fraction of triples for vertex <math>i</math> that are closed, and can be measured as <math>\frac{\delta (i)}{\tau (i)}</math>. Thus, the clustering coefficient <math>C(G)</math> of graph <math>G</math> is given by <math>C(G) = \frac {1}{N_2} \sum_{i \in V, d_i \ge 2} c(i)</math>, where <math>N_2</math> is the number of nodes with degree at least 2. | | Now, for a vertex <math>i</math> with <math>d_i \ge 2</math>, the clustering coefficient <math>c(i)</math> of vertex <math>i</math> is the fraction of triples for vertex <math>i</math> that are closed, and can be measured as <math>\frac{\delta (i)}{\tau (i)}</math>. Thus, the clustering coefficient <math>C(G)</math> of graph <math>G</math> is given by <math>C(G) = \frac {1}{N_2} \sum_{i \in V, d_i \ge 2} c(i)</math>, where <math>N_2</math> is the number of nodes with degree at least 2. |
| | | |
− | 现在,对于一个顶点 < math > i </math > 与 < math > d _ i ge 2 </math > 相关的集聚系数 </math > c (i) </math > i </math > 是顶点 < math > i </math > 的三元组的分数,它是封闭的,可以被测量为 < math > frac { delta (i)}{ tau (i)} </math > 。因此,图的 c (g) </math > g </math > 的集聚系数由 < math > c (g) = frac {1}{ n _ 2} sum { i in v,d _ i ge2} c (i) </math > 给出,其中 < math > n _ 2 </math > 是度数至少为2的节点数。
| + | 现在,对于具有<math> d_i \ ge 2 </ math>的顶点<math> i </ math>,顶点<math> i </ math>的聚类系数<math> c(i)</ math> 是封闭的顶点<math> i </ math>的三元组分数,可以测量为<math> \ frac {\ delta(i)} {\ tau(i)} </ math>。 因此,图<math> G </ math>的聚类系数<math> C(G)</ math>由<math> C(G)= \ frac {1} {N_2} \ sum_ {i \ 在V中,d_i \ ge 2} c(i)</ math>,其中<math> N_2 </ math>是度数至少为2的节点数。 |
− | | |
− | | |
| | | |
| ===Transitivity=== | | ===Transitivity=== |