更改

跳到导航 跳到搜索
添加1,112字节 、 2020年9月28日 (一) 18:44
无编辑摘要
第12行: 第12行:     
[[Image:6n-graf.svg.png|thumb|A graph with 6 vertices and 7 edges where the vertex number 6 on the far-left is a leaf vertex or a pendant vertex
 
[[Image:6n-graf.svg.png|thumb|A graph with 6 vertices and 7 edges where the vertex number 6 on the far-left is a leaf vertex or a pendant vertex
一个具有6个'''<font color="#ff8000"> 顶点</font>'''和7条边的图,其中最左边数字6的结点是'''<font color="#ff8000"> 叶顶点 Leaf Vertex</font>'''或叫做'''<font color="#ff8000"> 悬挂点 Pendant Vertex</font>''']]
+
一个具有6个'''<font color="#ff8000"> 顶点</font>'''和7条边的图,其中最左边数字6的顶点是'''<font color="#ff8000"> 叶顶点 Leaf Vertex</font>'''或叫做'''<font color="#ff8000"> 悬挂点 Pendant Vertex</font>''']]
    
A graph with 6 vertices and 7 edges where the vertex number 6 on the far-left is a leaf vertex or a pendant vertex
 
A graph with 6 vertices and 7 edges where the vertex number 6 on the far-left is a leaf vertex or a pendant vertex
第38行: 第38行:  
The two vertices forming an edge are said to be the endpoints of this edge, and the edge is said to be incident to the vertices. A vertex w is said to be adjacent to another vertex v if the graph contains an edge (v,w). The neighborhood of a vertex v is an induced subgraph of the graph, formed by all vertices adjacent to&nbsp;v.
 
The two vertices forming an edge are said to be the endpoints of this edge, and the edge is said to be incident to the vertices. A vertex w is said to be adjacent to another vertex v if the graph contains an edge (v,w). The neighborhood of a vertex v is an induced subgraph of the graph, formed by all vertices adjacent to&nbsp;v.
   −
形成边的两个'''<font color="#ff8000"> 顶点</font>'''称为这条边的'''<font color="#ff8000"> 端点</font>''',这条边称为'''<font color="#ff8000"> 关联Incident</font>'''于这两个'''<font color="#ff8000"> 顶点</font>'''的边。如果图包含一条边(''v'',''w'') ,则称一个'''<font color="#ff8000"> 顶点</font>'''''w'' 与另一个'''<font color="#ff8000"> 顶点</font>''' ''v'' '''<font color="#ff8000">相邻接 Adjacent </font>'''。'''<font color="#ff8000"> 顶点</font>''' v 的[[邻域]](neighborhood)是该图的一个'''<font color="#ff8000"> 导出子图</font>'''(induced subgraph),由邻接于 "v" 的所有'''<font color="#ff8000"> 顶点</font>'''构成。
+
形成边的两个'''<font color="#ff8000"> 顶点</font>'''被称为这条边的'''<font color="#ff8000"> 端点</font>''',这条边称为'''<font color="#ff8000"> 关联Incident</font>'''于这两个'''<font color="#ff8000"> 顶点</font>'''的边。如果图包含一条边(''v'',''w'') ,则称一个'''<font color="#ff8000"> 顶点</font>'''''w'' 与另一个'''<font color="#ff8000"> 顶点</font>''' ''v'' '''<font color="#ff8000">相邻接 Adjacent </font>'''。'''<font color="#ff8000"> 顶点</font>''' v 的[[邻域]](neighborhood)是该图的一个'''<font color="#ff8000"> 导出子图</font>'''(induced subgraph),由邻接于 "v" 的所有'''<font color="#ff8000"> 顶点</font>'''构成。
    
==Types of vertices==
 
==Types of vertices==
第46行: 第46行:  
Example network with 8 vertices (of which one is isolated) and 10 edges.
 
Example network with 8 vertices (of which one is isolated) and 10 edges.
   −
具有8个顶点(其中一个是孤立的)和10条边的网络示例。
+
用具有8个顶点(其中一个是孤立的)和10条边的网络示意。
    
The [[degree (graph theory)|degree]] of a vertex, denoted 𝛿(v) in a graph is the number of edges incident to it. An '''isolated vertex''' is a vertex with degree zero; that is, a vertex that is not an endpoint of any edge (the example image illustrates one isolated vertex).<ref>[[:File:Small Network.png]]; example image of a network with 8 vertices and 10 edges</ref> A '''leaf vertex''' (also '''pendant vertex''') is a vertex with degree one. In a directed graph, one can distinguish the outdegree (number of outgoing edges), denoted 𝛿<sup> +</sup>(v), from the indegree (number of incoming edges), denoted 𝛿<sup>−</sup>(v); a '''source vertex''' is a vertex with indegree zero, while a '''sink vertex''' is a vertex with outdegree zero. A '''simplicial vertex''' is one whose neighbors form a [[clique (graph theory)|clique]]: every two neighbors are adjacent. A [[universal vertex]] is a vertex that is adjacent to every other vertex in the graph.
 
The [[degree (graph theory)|degree]] of a vertex, denoted 𝛿(v) in a graph is the number of edges incident to it. An '''isolated vertex''' is a vertex with degree zero; that is, a vertex that is not an endpoint of any edge (the example image illustrates one isolated vertex).<ref>[[:File:Small Network.png]]; example image of a network with 8 vertices and 10 edges</ref> A '''leaf vertex''' (also '''pendant vertex''') is a vertex with degree one. In a directed graph, one can distinguish the outdegree (number of outgoing edges), denoted 𝛿<sup> +</sup>(v), from the indegree (number of incoming edges), denoted 𝛿<sup>−</sup>(v); a '''source vertex''' is a vertex with indegree zero, while a '''sink vertex''' is a vertex with outdegree zero. A '''simplicial vertex''' is one whose neighbors form a [[clique (graph theory)|clique]]: every two neighbors are adjacent. A [[universal vertex]] is a vertex that is adjacent to every other vertex in the graph.
第52行: 第52行:  
The degree of a vertex, denoted 𝛿(v) in a graph is the number of edges incident to it. An isolated vertex is a vertex with degree zero; that is, a vertex that is not an endpoint of any edge (the example image illustrates one isolated vertex). A leaf vertex (also pendant vertex) is a vertex with degree one. In a directed graph, one can distinguish the outdegree (number of outgoing edges), denoted 𝛿<sup> +</sup>(v), from the indegree (number of incoming edges), denoted 𝛿<sup>−</sup>(v); a source vertex is a vertex with indegree zero, while a sink vertex is a vertex with outdegree zero. A simplicial vertex is one whose neighbors form a clique: every two neighbors are adjacent. A universal vertex is a vertex that is adjacent to every other vertex in the graph.
 
The degree of a vertex, denoted 𝛿(v) in a graph is the number of edges incident to it. An isolated vertex is a vertex with degree zero; that is, a vertex that is not an endpoint of any edge (the example image illustrates one isolated vertex). A leaf vertex (also pendant vertex) is a vertex with degree one. In a directed graph, one can distinguish the outdegree (number of outgoing edges), denoted 𝛿<sup> +</sup>(v), from the indegree (number of incoming edges), denoted 𝛿<sup>−</sup>(v); a source vertex is a vertex with indegree zero, while a sink vertex is a vertex with outdegree zero. A simplicial vertex is one whose neighbors form a clique: every two neighbors are adjacent. A universal vertex is a vertex that is adjacent to every other vertex in the graph.
   −
图中表示(v)的顶点的度数是关联到它的边的数目。一个孤立的顶点是一个度为零的顶点,也就是说,一个顶点不是任何边的端点(示例图片显示了一个孤立的顶点)。叶顶点(也可以是悬垂顶点)是度数为1的顶点。在有向图中,我们可以区分外度(外出边数) ,表示 < sup > + </sup > (v) ,和外度(外入边数) ,表示 < sup >-</sup > (v) ; 源顶点是具有外度为零的顶点,而汇顶点是具有外度为零的顶点。单纯形顶点是邻接成团的顶点,每两个邻接是相邻的。通用顶点是图中与其他顶点相邻的顶点。
+
<font color="#32cd32">图中顶点的’’’</font><font color="#ff8000">度数</font><font color="#32cd32">’’’(用𝛿(v)表示)是关联到它的边的数目</font>。一个’’’<font color="#ff8000">孤立顶点</font>’’’是一个度为零的顶点,也就是说,是一个不是任何边的端点的顶点(示例图片中有一个’’’<font color="#ff8000">孤立顶点</font>’’’的例子)。’’’<font color="#ff8000">叶顶点</font>’’’(也称作’’’<font color="#ff8000">悬挂点</font>’’’)是度数为1的顶点。在有向图中,我们可以区分<font color="#32cd32">外度(外出边数)</font>(用 𝛿<sup> +</sup>(v) 表示),和<font color="#32cd32">外度(外入边数) </font>(用𝛿<sup></sup>(v)表示) ; <font color="#32cd32">源顶点</font>是外度为零的顶点,而<font color="#32cd32">汇顶点</font>是具有外度为零的顶点。<font color="#32cd32">单纯形顶点</font>是<font color="#32cd32">邻接</font>成团的顶点:每两个<font color="#32cd32">邻接</font>都是相邻的。<font color="#32cd32">通用顶点</font>是在图中与其他所有顶点都相邻的顶点。
      第60行: 第60行:  
A cut vertex is a vertex the removal of which would disconnect the remaining graph; a vertex separator is a collection of vertices the removal of which would disconnect the remaining graph into small pieces. A k-vertex-connected graph is a graph in which removing fewer than k vertices always leaves the remaining graph connected. An independent set is a set of vertices no two of which are adjacent, and a vertex cover is a set of vertices that includes at least one endpoint of each edge in the graph. The vertex space of a graph is a vector space having a set of basis vectors corresponding with the graph's vertices.
 
A cut vertex is a vertex the removal of which would disconnect the remaining graph; a vertex separator is a collection of vertices the removal of which would disconnect the remaining graph into small pieces. A k-vertex-connected graph is a graph in which removing fewer than k vertices always leaves the remaining graph connected. An independent set is a set of vertices no two of which are adjacent, and a vertex cover is a set of vertices that includes at least one endpoint of each edge in the graph. The vertex space of a graph is a vector space having a set of basis vectors corresponding with the graph's vertices.
   −
割点是一个顶点,如果去掉这个顶点,就会断开剩余图的连接; 顶点分隔符是一组顶点的集合,如果去掉这些顶点,就会断开剩余图的连接。一个 k- 顶点连通图是这样一个图: 去掉少于 k 个顶点后,剩下的图仍然是连通的。一个独立的集合是一组顶点,没有两个是相邻的,顶点覆盖是一组顶点,包括图中每条边的至少一个端点。图的顶点空间是一个向量空间,它有一组与图的顶点相对应的基向量。
+
’’’<font color="#ff8000">割点</font>’’’是一类顶点,如果去掉它,就会断开剩余图的连接; <font color="32cd32">顶点分隔符</font>是一组顶点的集合,如果去掉这些顶点,就会将剩余图断裂成小片段。一个<font color="32cd32">k- 顶点连通图</font>是指一类去掉少于 k 个顶点后,剩余部分仍然连通的图。一个<font color="32cd32">独立的集合</font>是一组任意二者均不相邻的顶点群。<font color="32cd32">顶点覆盖</font>是一组顶点,它们均包含图中任意边的至少一个端点。图的’’’<font color="#ff8000">顶点空间</font>’’’是一个向量空间,它的基向量与图的顶点相对应。
      第68行: 第68行:  
A graph is vertex-transitive if it has symmetries that map any vertex to any other vertex. In the context of graph enumeration and graph isomorphism it is important to distinguish between labeled vertices and unlabeled vertices. A labeled vertex is a vertex that is associated with extra information that enables it to be distinguished from other labeled vertices; two graphs can be considered isomorphic only if the correspondence between their vertices pairs up vertices with equal labels. An unlabeled vertex is one that can be substituted for any other vertex based only on its adjacencies in the graph and not based on any additional information.
 
A graph is vertex-transitive if it has symmetries that map any vertex to any other vertex. In the context of graph enumeration and graph isomorphism it is important to distinguish between labeled vertices and unlabeled vertices. A labeled vertex is a vertex that is associated with extra information that enables it to be distinguished from other labeled vertices; two graphs can be considered isomorphic only if the correspondence between their vertices pairs up vertices with equal labels. An unlabeled vertex is one that can be substituted for any other vertex based only on its adjacencies in the graph and not based on any additional information.
   −
如果一个图具有将任何顶点映射到任何其他顶点的对称性,则该图是顶点传递的。在图计数和图同构的背景下,区分标记顶点和非标记顶点非常重要。标记顶点是与额外信息相关联的顶点,这些额外信息使得标记顶点能够与其他标记顶点区分开来; 只有当两个顶点之间的对应关系对应于具有相同标记的顶点时,两个图才可以被认为是同构的。一个未标记的顶点是一个可以替换的任何其他顶点只基于其邻接在图中,并没有任何额外的信息。
+
如果一个图具有将任何顶点映射到任何其他顶点的对称性,则该图是’’’<font color="#ff8000">顶点传递</font>’’’的。在<font color="32cd32">图计数</font>和’’’<font color="#ff8000">图同构</font>’’’的情况下,区分’’’<font color="#ff8000">标记顶点</font>’’’和’’’<font color="#ff8000">非标记顶点</font>’’’非常重要。’’’<font color="#ff8000">标记顶点</font>’’’是与能使其区别于其他’’’<font color="#ff8000">标记顶点</font>’’’的额外信息相关联的顶点; <font color="32cd32">只有当其顶点之间的对应关系与有相同标记的顶点配对时</font>,两个图才可以被认为是同构的。’’’<font color="#ff8000">非标记顶点</font>’’’是仅基于其在图中的邻接顶点而不基于任何其他信息就能被其他任意顶点替换的一类顶点。
      第76行: 第76行:  
Vertices in graphs are analogous to, but not the same as, vertices of polyhedra: the skeleton of a polyhedron forms a graph, the vertices of which are the vertices of the polyhedron, but polyhedron vertices have additional structure (their geometric location) that is not assumed to be present in graph theory. The vertex figure of a vertex in a polyhedron is analogous to the neighborhood of a vertex in a graph.
 
Vertices in graphs are analogous to, but not the same as, vertices of polyhedra: the skeleton of a polyhedron forms a graph, the vertices of which are the vertices of the polyhedron, but polyhedron vertices have additional structure (their geometric location) that is not assumed to be present in graph theory. The vertex figure of a vertex in a polyhedron is analogous to the neighborhood of a vertex in a graph.
   −
图中的顶点类似于多面体的顶点,但不同于多面体的顶点: 多面体的骨架构成一个图,其顶点是多面体的顶点,但多面体的顶点有附加的结构(几何位置) ,这在图论中是不存在的。多面体中顶点的顶点图形类似于图中顶点的邻域。
+
在图中的顶点类似但不等同于多面体的顶点:多面体的骨架构成一个图,其顶点是多面体的顶点,但多面体的顶点有无法在图论中假定存在的其他结构(几何位置) 。多面体中顶点的<font color="32cd32">顶点图形</font>类似于图中顶点的邻域。
     
9

个编辑

导航菜单