第75行: |
第75行: |
| The formal presentation of the concept in an economy is as follows: Consider an economy with <math> n</math> agents and <math> k </math> goods. Then an allocation <math> \{x_1, ..., x_n\} </math>, where <math> x_i \in \mathbb{R}^k </math> for all i, is Pareto optimal if there is no other feasible allocation <math> \{x_1', ..., x_n'\} </math> such that, for utility function <math> u_i </math> for each agent <math> i </math>, <math> u_i(x_i') \geq u_i(x_i) </math> for all <math> i \in \{1, ..., n\} </math> with <math> u_i(x_i') > u_i(x_i) </math> for some <math> i</math>. Here, in this simple economy, "feasibility" refers to an allocation where the total amount of each good that is allocated sums to no more than the total amount of the good in the economy. In a more complex economy with production, an allocation would consist both of consumption vectors and production vectors, and feasibility would require that the total amount of each consumed good is no greater than the initial endowment plus the amount produced. | | The formal presentation of the concept in an economy is as follows: Consider an economy with <math> n</math> agents and <math> k </math> goods. Then an allocation <math> \{x_1, ..., x_n\} </math>, where <math> x_i \in \mathbb{R}^k </math> for all i, is Pareto optimal if there is no other feasible allocation <math> \{x_1', ..., x_n'\} </math> such that, for utility function <math> u_i </math> for each agent <math> i </math>, <math> u_i(x_i') \geq u_i(x_i) </math> for all <math> i \in \{1, ..., n\} </math> with <math> u_i(x_i') > u_i(x_i) </math> for some <math> i</math>. Here, in this simple economy, "feasibility" refers to an allocation where the total amount of each good that is allocated sums to no more than the total amount of the good in the economy. In a more complex economy with production, an allocation would consist both of consumption vectors and production vectors, and feasibility would require that the total amount of each consumed good is no greater than the initial endowment plus the amount produced. |
| | | |
− | 这个概念在一个经济体系中的正式表现如下: 考虑一个有''n''个主体和''k''个商品的经济体系,如果没有其他可行的分配使得对于效用函数对任意主体''i''满足,对某些个体''i''满足,那么一个分配,其中''i'',是 Pareto 最优的。在这个简单的经济体系中,“可行性”是指每种商品的分配总额不超过该经济体系中所有商品的总额。在一个有生产能力的更为复杂的经济体中,一个分配将包括消费载体和生产载体,且可行性要求每种消费品的总量不大于初始禀赋加上生产总量。 | + | 这个概念在一个经济体系中的正式表现如下: 考虑一个有''n''个主体和''k''个商品的经济体系,如果没有其他可行的分配'''<font color="#32CD32">此处需插入公式</font>'''使得对于效用函数对任意主体''i''满足'''<font color="#32CD32">此处需插入公式</font>''',它对某些个体''i''满足'''<font color="#32CD32">此处需插入公式</font>''',那么一个分配'''<font color="#32CD32">此处需插入公式</font>''',是 Pareto 最优的,其中对任意''i'','''<font color="#32CD32">此处需插入公式</font>'''。在这个简单的经济体系中,“可行性”是指每种商品的分配总额不超过该经济体系中所有商品的总额。在一个有生产能力的更为复杂的经济体中,一个分配将包括消费载体和生产载体,且可行性要求每种消费品的总量不大于初始禀赋加上生产总量。 |
| | | |
| | | |
第246行: |
第246行: |
| | | |
| | | |
− | 很容易证明分配是帕累托有效的: 因为所有的权重都是正的,任何帕累托改进都会增加加权和,这与的定义相矛盾。 | + | 很容易证明分配是帕累托有效的: 因为所有'''<font color="#32CD32">此处需插入公式</font>'''的权重都是正的,任何帕累托改进都会增加加权和,这与'''<font color="#32CD32">此处需插入公式</font>'''的定义相矛盾。 |
| | | |
| | | |
第296行: |
第296行: |
| The Pareto frontier, P(Y), may be more formally described as follows. Consider a system with function <math>f: \mathbb{R}^n \rightarrow \mathbb{R}^m</math>, where X is a compact set of feasible decisions in the metric space <math>\mathbb{R}^n</math>, and Y is the feasible set of criterion vectors in <math>\mathbb{R}^m</math>, such that <math>Y = \{ y \in \mathbb{R}^m:\; y = f(x), x \in X\;\}</math>. | | The Pareto frontier, P(Y), may be more formally described as follows. Consider a system with function <math>f: \mathbb{R}^n \rightarrow \mathbb{R}^m</math>, where X is a compact set of feasible decisions in the metric space <math>\mathbb{R}^n</math>, and Y is the feasible set of criterion vectors in <math>\mathbb{R}^m</math>, such that <math>Y = \{ y \in \mathbb{R}^m:\; y = f(x), x \in X\;\}</math>. |
| | | |
− | 帕累托边界, ''P''(''Y'') ,可以更正式地描述如下。考虑一个包含函数的系统,其中''X''是度量空间中可行决策的紧集,''Y''是中标准向量的可行集,使得。 | + | 帕累托边界, ''P''(''Y'') ,可以更正式地描述如下。考虑一个包含函数'''<font color="#32CD32">此处需插入公式</font>'''的系统,其中''X''是度量空间'''<font color="#32CD32">此处需插入公式</font>'''中可行决策的紧集,''Y''是'''<font color="#32CD32">此处需插入公式</font>'''中标准向量的可行集,使得'''<font color="#32CD32">此处需插入公式</font>'''。 |
| | | |
| | | |
第304行: |
第304行: |
| We assume that the preferred directions of criteria values are known. A point <math>y^{\prime\prime} \in \mathbb{R}^m</math> is preferred to (strictly dominates) another point <math>y^{\prime} \in \mathbb{R}^m</math>, written as <math>y^{\prime\prime} \succ y^{\prime}</math>. The Pareto frontier is thus written as: | | We assume that the preferred directions of criteria values are known. A point <math>y^{\prime\prime} \in \mathbb{R}^m</math> is preferred to (strictly dominates) another point <math>y^{\prime} \in \mathbb{R}^m</math>, written as <math>y^{\prime\prime} \succ y^{\prime}</math>. The Pareto frontier is thus written as: |
| | | |
− | 我们假设标准值的最优方向是已知的。中的一个点优于中的另一个点,写作。因此,帕累托边界可以被描述为:
| + | 我们假设标准值的最优方向是已知的。'''<font color="#32CD32">此处需插入公式</font>'''中的一个点'''<font color="#32CD32">此处需插入公式</font>'''优于中的另一个点'''<font color="#32CD32">此处需插入公式</font>''',写作'''<font color="#32CD32">此处需插入公式</font>'''。因此,帕累托边界可以被描述为: |
| | | |
| | | |
第321行: |
第321行: |
| A significant aspect of the Pareto frontier in economics is that, at a Pareto-efficient allocation, the marginal rate of substitution is the same for all consumers. A formal statement can be derived by considering a system with m consumers and n goods, and a utility function of each consumer as <math>z_i=f^i(x^i)</math> where <math>x^i=(x_1^i, x_2^i, \ldots, x_n^i)</math> is the vector of goods, both for all i. The feasibility constraint is <math>\sum_{i=1}^m x_j^i = b_j</math> for <math>j=1,\ldots,n</math>. To find the Pareto optimal allocation, we maximize the Lagrangian: | | A significant aspect of the Pareto frontier in economics is that, at a Pareto-efficient allocation, the marginal rate of substitution is the same for all consumers. A formal statement can be derived by considering a system with m consumers and n goods, and a utility function of each consumer as <math>z_i=f^i(x^i)</math> where <math>x^i=(x_1^i, x_2^i, \ldots, x_n^i)</math> is the vector of goods, both for all i. The feasibility constraint is <math>\sum_{i=1}^m x_j^i = b_j</math> for <math>j=1,\ldots,n</math>. To find the Pareto optimal allocation, we maximize the Lagrangian: |
| | | |
− | 经济学中,帕累托边界的一个重要方面是,在帕累托有效分配中,所有消费者的边际替代率是相同的。一个正式的陈述可以通过考虑一个有''m''个消费者和''n''个商品的系统,以及每个消费者的效用函数来推导出。在这个效用方程中,对所有的''i'',是商品的矢量。可行性约束为。为了找到帕累托最优分配,我们最大化拉格朗日函数: | + | 经济学中,帕累托边界的一个重要方面是,在帕累托有效分配中,所有消费者的边际替代率是相同的。一个正式的陈述可以通过考虑一个有''m''个消费者和''n''个商品的系统,以及每个消费者的效用函数'''<font color="#32CD32">此处需插入公式</font>'''来推导出。在这个效用方程中,对所有的''i'','''<font color="#32CD32">此处需插入公式</font>'''是商品的矢量。可行性约束为'''<font color="#32CD32">此处需插入公式</font>'''。为了找到帕累托最优分配,我们最大化拉格朗日函数: |
| | | |
| | | |
第335行: |
第335行: |
| where <math>(\lambda_k)_k</math> and <math>(\mu_j)_j</math> are the vectors of multipliers. Taking the partial derivative of the Lagrangian with respect to each good <math>x_j^k</math> for <math>j=1,\ldots,n</math> and <math>k=1,\ldots, m</math> and gives the following system of first-order conditions: | | where <math>(\lambda_k)_k</math> and <math>(\mu_j)_j</math> are the vectors of multipliers. Taking the partial derivative of the Lagrangian with respect to each good <math>x_j^k</math> for <math>j=1,\ldots,n</math> and <math>k=1,\ldots, m</math> and gives the following system of first-order conditions: |
| | | |
− | 其中是乘子的向量。采用关于商品的拉格朗日函数的偏导数,其中,并给出以下一阶条件系统:
| + | 其中'''<font color="#32CD32">此处需插入公式</font>'''和'''<font color="#32CD32">此处需插入公式</font>'''是乘子的向量。采用关于商品的拉格朗日函数的偏导数,其中,并给出以下一阶条件系统: |
| | | |
| | | |
第359行: |
第359行: |
| where <math>f_{x^i_j}</math> denotes the partial derivative of <math>f</math> with respect to <math>x_j^i</math>. Now, fix any <math>k\neq i</math> and <math>j,s\in \{1,\ldots,n\}</math>. The above first-order condition imply that | | where <math>f_{x^i_j}</math> denotes the partial derivative of <math>f</math> with respect to <math>x_j^i</math>. Now, fix any <math>k\neq i</math> and <math>j,s\in \{1,\ldots,n\}</math>. The above first-order condition imply that |
| | | |
− | 其中 math f { x ^ i j } / math 表示数学 f / math 关于数学 x j ^ i / math 的偏导数。现给定。上述一阶条件意味着 | + | 其中'''<font color="#32CD32">此处需插入公式</font>'''表示'''<font color="#32CD32">此处需插入公式</font>'''的偏导数。现给定'''<font color="#32CD32">此处需插入公式</font>'''。上述一阶条件意味着 |
| | | |
| | | |