第379行: |
第379行: |
| 其中 d 是选定的度量单位。其他联系准则包括: | | 其中 d 是选定的度量单位。其他联系准则包括: |
| | | |
| + | 此处后准则无翻译 |
| | | |
| + | * The sum of all intra-cluster variance. |
| | | |
− | * The sum of all intra-cluster variance.
| + | 补充翻译 所有簇内方差之和。 |
| | | |
| * The increase in variance for the cluster being merged ([[Ward's method|Ward's criterion]]).<ref name="wards method">{{cite journal | | * The increase in variance for the cluster being merged ([[Ward's method|Ward's criterion]]).<ref name="wards method">{{cite journal |
| + | |
| + | 补充翻译 合并中的簇的方差相加 |
| | | |
| |doi=10.2307/2282967 | | |doi=10.2307/2282967 |
第435行: |
第439行: |
| * The probability that candidate clusters spawn from the same distribution function (V-linkage). | | * The probability that candidate clusters spawn from the same distribution function (V-linkage). |
| | | |
− | * The product of in-degree and out-degree on a k-nearest-neighbour graph (graph degree linkage).<ref>{{Cite journal|last=Zhang|first=Wei|last2=Wang|first2=Xiaogang|last3=Zhao|first3=Deli|last4=Tang|first4=Xiaoou|date=2012|editor-last=Fitzgibbon|editor-first=Andrew|editor2-last=Lazebnik|editor2-first=Svetlana|editor3-last=Perona|editor3-first=Pietro|editor4-last=Sato|editor4-first=Yoichi|editor5-last=Schmid|editor5-first=Cordelia|title=Graph Degree Linkage: Agglomerative Clustering on a Directed Graph|journal=Computer Vision – ECCV 2012|series=Lecture Notes in Computer Science|language=en|publisher=Springer Berlin Heidelberg|volume=7572|pages=428–441|doi=10.1007/978-3-642-33718-5_31|isbn=9783642337185|arxiv=1208.5092|bibcode=2012arXiv1208.5092Z}} See also: https://github.com/waynezhanghk/gacluster</ref> | + | 补充翻译 候选数据群从同一分布函数(V-连锁)中产生的概率。 |
| + | |
| + | * The product of in-degree and out-degree on a k-nearest-neighbour graph (graph degree linkage). |
| + | |
| + | 补充翻译 *k-最近邻图(图度连锁)上的入度与出度的乘积 |
| + | |
| + | <ref>{{Cite journal|last=Zhang|first=Wei|last2=Wang|first2=Xiaogang|last3=Zhao|first3=Deli|last4=Tang|first4=Xiaoou|date=2012|editor-last=Fitzgibbon|editor-first=Andrew|editor2-last=Lazebnik|editor2-first=Svetlana|editor3-last=Perona|editor3-first=Pietro|editor4-last=Sato|editor4-first=Yoichi|editor5-last=Schmid|editor5-first=Cordelia|title=Graph Degree Linkage: Agglomerative Clustering on a Directed Graph|journal=Computer Vision – ECCV 2012|series=Lecture Notes in Computer Science|language=en|publisher=Springer Berlin Heidelberg|volume=7572|pages=428–441|doi=10.1007/978-3-642-33718-5_31|isbn=9783642337185|arxiv=1208.5092|bibcode=2012arXiv1208.5092Z}} See also: https://github.com/waynezhanghk/gacluster</ref> |
| + | |
| + | * The increment of some cluster descriptor (i.e., a quantity defined for measuring the quality of a cluster) after merging two clusters. |
| + | |
| + | 补充翻译 在合并了两个数据群之后,某个群的定义符号(即为度量一个簇的质量而定义的一个量)的增量。 |
| | | |
− | * The increment of some cluster descriptor (i.e., a quantity defined for measuring the quality of a cluster) after merging two clusters.<ref>Zhang, et al. "Agglomerative clustering via maximum incremental path integral." Pattern Recognition (2013).</ref><ref>Zhao, and Tang. "Cyclizing clusters via zeta function of a graph."Advances in Neural Information Processing Systems. 2008.</ref><ref>Ma, et al. "Segmentation of multivariate mixed data via lossy data coding and compression." IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(9) (2007): 1546-1562.</ref>
| + | <ref>Zhang, et al. "Agglomerative clustering via maximum incremental path integral." Pattern Recognition (2013).</ref><ref>Zhao, and Tang. "Cyclizing clusters via zeta function of a graph."Advances in Neural Information Processing Systems. 2008.</ref><ref>Ma, et al. "Segmentation of multivariate mixed data via lossy data coding and compression." IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(9) (2007): 1546-1562.</ref> |
| | | |
| == Discussion 讨论== | | == Discussion 讨论== |