第111行: |
第111行: |
| | | |
| | | |
− | By re-expressing the critical threshold as a function of the gamma exponent for a [[scale-free network]], we can draw a couple of important conclusions regarding scale-free network robustness.<ref name="NetworkBook"/> | + | By re-expressing the critical threshold as a function of the gamma exponent for a [[scale-free network]], we can draw a couple of important conclusions regarding scale-free network robustness. |
| | | |
| By re-expressing the critical threshold as a function of the gamma exponent for a scale-free network, we can draw a couple of important conclusions regarding scale-free network robustness. | | By re-expressing the critical threshold as a function of the gamma exponent for a scale-free network, we can draw a couple of important conclusions regarding scale-free network robustness. |
| | | |
− | 通过将临界阈值重新表示为无尺度网络指数的函数,我们可以得出关于无尺度网络稳健性的两个重要结论。
| + | 通过将临界阈值重新表达为无标度网络的伽马指数函数,我们可以得出有关无标度网络鲁棒性的两个重要结论。 |
| | | |
| | | |
| | | |
| <math> | | <math> |
− |
| |
− | <math>
| |
− |
| |
− | 《数学》
| |
− |
| |
− | \begin{align}
| |
− |
| |
− | \begin{align}
| |
− |
| |
− | 开始{ align }
| |
− |
| |
− | f_c &=1-\frac{1}{\kappa-1}\\
| |
| | | |
| f_c &=1-\frac{1}{\kappa-1}\\ | | f_c &=1-\frac{1}{\kappa-1}\\ |
− |
| |
− | 1-frac {1}{ kappa-1}
| |
− |
| |
− | \kappa &=\frac{\langle k^2\rangle}{\langle k \rangle}=\left|\frac{2-\gamma}{3-\gamma}\right|A \\
| |
| | | |
| \kappa &=\frac{\langle k^2\rangle}{\langle k \rangle}=\left|\frac{2-\gamma}{3-\gamma}\right|A \\ | | \kappa &=\frac{\langle k^2\rangle}{\langle k \rangle}=\left|\frac{2-\gamma}{3-\gamma}\right|A \\ |
− |
| |
− | Kappa & = frac { langle k ^ 2 rangle }{ langle k rangle } = left | frac {2-gamma }{3-gamma } right | a
| |
− |
| |
− | A &=K_{min},~\gamma > 3 \\
| |
| | | |
| A &=K_{min},~\gamma > 3 \\ | | A &=K_{min},~\gamma > 3 \\ |
第150行: |
第130行: |
| | | |
| A &=K_{max}^{3-\gamma}K_{min}^{\gamma-2},~3 > \gamma > 2 \\ | | A &=K_{max}^{3-\gamma}K_{min}^{\gamma-2},~3 > \gamma > 2 \\ |
− |
| |
− | A &=K_{max}^{3-\gamma}K_{min}^{\gamma-2},~3 > \gamma > 2 \\
| |
− |
| |
− | A & = k _ { max } ^ {3-gamma } k _ { min } ^ { gamma-2} ,~ 3 > gamma > 2
| |
− |
| |
− | A &=K_{max},~2 > \gamma > 1 \\
| |
| | | |
| A &=K_{max},~2 > \gamma > 1 \\ | | A &=K_{max},~2 > \gamma > 1 \\ |
− |
| |
− | A & = k { max } ,~ 2 > γ > 1
| |
− |
| |
− | &where~K_{max}=K_{min}N^{\frac{1}{\gamma - 1}}
| |
| | | |
| &where~K_{max}=K_{min}N^{\frac{1}{\gamma - 1}} | | &where~K_{max}=K_{min}N^{\frac{1}{\gamma - 1}} |
− |
| |
− | 其中 ~ k { max } = k { min } n ^ { frac {1}{ gamma-1}
| |
− |
| |
− | \end{align}
| |
− |
| |
− | \end{align}
| |
− |
| |
− | 结束{ align }
| |
| | | |
| </math> | | </math> |
− |
| |
− | </math>
| |
− |
| |
− | 数学
| |
− |
| |
| | | |
| | | |
第185行: |
第142行: |
| For gamma greater than 3, the critical threshold only depends on gamma and the minimum degree, and in this regime the network acts like a random network breaking when a finite fraction of its nodes are removed. For gamma less than 3, <math>\kappa</math> diverges in the limit as N trends toward infinity. In this case, for large scale-free networks, the critical threshold approaches 1. This essentially means almost all nodes must be removed in order to destroy the giant component, and large scale-free networks are very robust with regard to random failures. One can make intuitive sense of this conclusion by thinking about the heterogeneity of scale-free networks and of the hubs in particular. Because there are relatively few hubs, they are less likely to be removed through random failures while small low-degree nodes are more likely to be removed. Because the low-degree nodes are of little importance in connecting the giant component, their removal has little impact. | | For gamma greater than 3, the critical threshold only depends on gamma and the minimum degree, and in this regime the network acts like a random network breaking when a finite fraction of its nodes are removed. For gamma less than 3, <math>\kappa</math> diverges in the limit as N trends toward infinity. In this case, for large scale-free networks, the critical threshold approaches 1. This essentially means almost all nodes must be removed in order to destroy the giant component, and large scale-free networks are very robust with regard to random failures. One can make intuitive sense of this conclusion by thinking about the heterogeneity of scale-free networks and of the hubs in particular. Because there are relatively few hubs, they are less likely to be removed through random failures while small low-degree nodes are more likely to be removed. Because the low-degree nodes are of little importance in connecting the giant component, their removal has little impact. |
| | | |
− | 对于 γ 大于3的情况,临界阈值只取决于 γ 和最小度,在这种情况下,当有限部分的节点被移除时,网络就像一个随机的网络断裂。对于小于3的 γ,k 在极限处发散,n 趋向于无穷大。在这种情况下,对于大规模无标度网络,临界阈值接近1。这基本上意味着几乎所有的节点必须被删除,以摧毁巨大的组成部分,大规模无尺度网络是非常健壮的随机故障。通过考虑无标度网络的异质性,特别是枢纽的异质性,人们可以对这一结论有直观的理解。由于集线器相对较少,它们不太可能通过随机故障被移除,而小的低度节点更有可能被移除。由于低度节点对于连接巨型构件的重要性不大,因此去除这些节点的影响不大。
| + | 对于大于3的伽玛γ,临界阈值仅取决于伽玛γ和最小度。这种情况下,网络的部分节点被删除,之后该网络会像随机网络瓦解一般。对于小于3的伽玛,随着N趋于无穷大,κ的极限会发散。在这种情况下,对于大型无标度网络,关键阈值接近1。从本质上讲,这意味着几乎要除去所有节点才能破坏巨型组件,该大型无标度网络在应对随机故障方面非常强大。通过考虑无标度网络尤其是枢纽的异构性,可以直观地理解这一点。由于相对较少的枢纽节点,因此不太可能通过随机故障将其删除,而较小的低度节点则更可能被删除。同时由于低度节点在连接巨型部件方面不重要,因此将其移除几乎没有多大影响。 |
| | | |
| ==Targeted attacks on scale-free networks== | | ==Targeted attacks on scale-free networks== |